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Abstract

We introduce the sparse modern Hopfield model as a sparse extension of the mod-
ern Hopfield model. Like its dense counterpart, the sparse modern Hopfield model
equips a memory-retrieval dynamics whose one-step approximation corresponds to
the sparse attention mechanism. Theoretically, our key contribution is a principled
derivation of a closed-form sparse Hopfield energy using the convex conjugate of
the sparse entropic regularizer. Building upon this, we derive the sparse memory
retrieval dynamics from the sparse energy function and show its one-step approxi-
mation is equivalent to the sparse-structured attention. Importantly, we provide a
sparsity-dependent memory retrieval error bound which is provably tighter than
its dense analog. The conditions for the benefits of sparsity to arise are therefore
identified and discussed. In addition, we show that the sparse modern Hopfield
model maintains the robust theoretical properties of its dense counterpart, including
rapid fixed point convergence and exponential memory capacity. Empirically, we
use both synthetic and real-world datasets to demonstrate that the sparse Hopfield
model outperforms its dense counterpart in many situations. [September 25, 2023]

1 Introduction
We address the computational challenges of modern Hopfield models by introducing a sparse Hopfield
model. Our sparse continuous Hopfield model equips a memory-retrieval dynamics that aligns with the
sparse-structured attention mechanism. By establishing a connection to sparse attention, the proposed
model not only offers a theoretically-grounded energy-based model for associative memory but also
enables robust representation learning and seamless integration with deep learning architectures. This
approach serves as an initial attempt of pushing the correspondence1 between Hopfield models and
attention mechanism [Ramsauer et al., 2021] toward sparse region, both theoretically and empirically,
resulting in data-dependent sparsity for meaningful and robust pattern representations, and a focus on
the most relevant information for each specific instance.

Hopfield models are classic associative memory models for both biological and artificial neural
networks [Hopfield, 1982, 1984]. These models are designed to store and retrieve memory patterns2.
They achieve these by embedding the memories in the energy landscape of a physical system (e.g.,
the Ising model in [Hopfield, 1982, Peretto and Niez, 1986]; see Figure 3 for a visualization), where

1While this equivalence only holds when the retrieval dynamics is applied exactly once, as originally shown
in [Ramsauer et al., 2021] and later emphasized in [Krotov and Hopfield, 2021], it allows us to view modern
Hopfield models as generalized attentions with additional functionalities and hence opens new avenues for
Hopfield-based architecture designs. See Appendix C for more discussions.

2For instance, if the stored memories are images of all the dogs you’ve seen in the past, and the query is the
image of a dog you see today, the Hopfield model retrieves the memory of the dog that most closely resembles
the one you saw today.
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each memory corresponds to a local minimum. When a query is presented, the model initiates
energy-minimizing retrieval dynamics at the query, which then navigate the energy landscape to find
the nearest local minimum, effectively retrieving the memory most similar to the query.

In the same vein, Ramsauer et al. [2021] propose the modern Hopfield model and integrate it into
deep learning architectures via a strong connection with transformer attention, offering enhanced per-
formance, theoretically guaranteed exponential memory capacity, and the ability to handle continuous
patterns. In addition, the modern Hopfield models have found success in various applications, such as
immunology [Widrich et al., 2020] and large language model [Fürst et al., 2022]. Apart from the ele-
gant connection to attention, theoretical advantages and empirically successes, the modern Hopfield
models have been shown to be computationally heavy and vulnerable against noisy queries [Millidge
et al., 2022]. In particular, the dense output alignments of the retrieval dynamics in modern Hopfield
models [Ramsauer et al., 2021] can be computationally inefficient, making models less interpretable
and noise-sensitive by assigning probability mass to many implausible outputs (patterns/keys).

To combat above, incorporating sparsity is an essential and common strategy. While there is a vast
body of work on sparsifying attention mechanisms [Tay et al., 2022, Beltagy et al., 2020, Qiu et al.,
2019, Child et al., 2019, Peters et al., 2019, Martins and Astudillo, 2016], similar developments for
the Hopfield models remain less explored. To bridge this gap, we present a sparse Hopfield model
that corresponds to the sparsemax attention mechanism [Martins and Astudillo, 2016]. In this paper,
we study the sparsification of the modern Hopfield model. The challenges are three-fold:

(C1) Non-Trivial Sparsification — Sparse Hopfield↔ Sparse Attention: To enable the use of
sparse Hopfield models as computational devices (DNN learning models) akin to [Ramsauer
et al., 2021], it is essential to achieve non-trivial sparsifications that exhibit equivalence to
specific sparse attention models. In other words, any meaningful sparsification should extend the
established equivalence [Ramsauer et al., 2021] between modern Hopfield models and attention
to encompass the sparse domain. While generalizing such equivalence is potentially impactful
as it may lay the groundwork for future Hopfield-based methodologies, architecture designs
and bio-computing systems (as in [Kozachkov et al., 2023]), the heuristic design of the modern
Hopfield model poses great difficulty to developing desired sparse models.

(C2) Introducing Sparsity into Hopfield Models: Unlike attention mechanisms where sparsification
is typically achieved either on the attention matrix (e.g., structured-sparsity [Tay et al., 2020,
Child et al., 2019]) or on the element-wise normalization map (e.g., sparsity-inducing maps
[Correia et al., 2019, Peters et al., 2019, Martins and Astudillo, 2016]), the sparsification of
Hopfield models is applied to both the energy function and the memory-retrieval dynamics, where
the latter monotonically decreases the Hopfield energy over time. Since attention mechanisms
(transformers) are typically not equipped with such a dynamical description, introducing sparsity
into Hopfield models while retaining the connection to attention is a less straightforward process.

(C3) Properties of the Sparse Hopfield Model: Further, it is unclear how the introduced sparsity may
affect different aspects of the model, such as memory capacity, fixed point convergence, retrieval
accuracy, and so on. Ideally, we are looking for sparsities that offer provable computational
benefits, such as enhanced robustness and increased memory capacity, among others.

Challenges (C1) and (C2) are inherent in Hopfield model, and certain requirements on the design
of energy function and retrieval dynamics are inevitable to obtain non-trivial sparse models. Hence,
we suppose the sparsified models should satisfy some conditions and verify them accordingly.
Concretely, a formulation for deriving desired sparse Hopfield energy via convex conjugation of
entropic regularizers is proposed. Furthermore, by applying Danskin’s theorem and convex-concave
procedure [Yuille and Rangarajan, 2003, 2001] on the sparse Hopfield energy function, we obtain
sparse retrieval dynamics linked to sparse attention. For (C3), the convergence of energy stationary
points and retrieval dynamics fixed points are connected via Zangwill’s method [Zangwill, 1969].
The sparse retrieval error bound is derived and used to determined the well-separation condition for
successful memory storage and retrieval. Lastly, the fundamental limit of memory capacity is derived
using the expected separation of random points on spheres [Cai and Jiang, 2012, Brauchart et al.,
2018, Ramsauer et al., 2021].

In summary, this work handles sparsification of modern Hopfield models while linking them to sparse
attention by addressing the following question:
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Is it possible to develop a theoretically-grounded (non-trivial) sparse Hopfield model capable of
storing information or learned prototypes throughout various layers of DNN models?

Contributions. We propose the Sparse Modern Hopfield Model. Our contributions are as follows:

• We propose a novel sparse Hopfield model whose retrieval dynamics corresponds to sparsemax
attention mechanism. It leads to sparse patterns by design, inheriting both noise robustness and
potential computational efficiency3 from [Martins and Astudillo, 2016], compared to its dense
counterparts. This work extends the theoretical understanding of the correspondence between
artificial and biological neural networks to sparse region. In addition, the sparse Hopfield layer,
a new deep learning component, is introduced with data-dependent sparsity.

• Theoretically, we establish provably advantages from sparsity and identify the conditions under
which these benefits arise. We begin by deriving the closed-form sparse Hopfield energy from
the convex conjugation of sparse entropic regularizer. Next, we demonstrate the correspondence
between sparse Hopfield retrieval dynamics and sparsemax attention. In addition, we prove the
fast convergence of the fixed points (also known as memory patterns, attractor states in literature)
for the retrieval dynamics and establish the exponential (in pattern size) memory capacity lower
bound with tighter retrieval error bound, compared with modern Hopfield models.

• Empirically, we conduct synthetic and realistic experiments to verify our theoretical results and
proposed methodology. Specifically, the sparse Hopfield model outperforms the dense Hopfield
model and machine learning baselines in sparse Multiple Instance Learning (MIL), time series
prediction and neural machine translation problems. This is observed with both sparse synthetic
and real-world datasets, where the baselines tend to fall short. Moreover, even in cases without
data sparsity, our proposed model delivers performance on par with its dense counterpart.

To the best of our knowledge, we are the first to propose a sparse Hopfield model whose retrieval
dynamics is equivalent to sparse attention mechanism with provably computational advantages.
Methodologically, the proposed model complements existing Hopfield-based DNN architectures
[Hoover et al., 2023, Paischer et al., 2022, Seidl et al., 2022, Fürst et al., 2022, Ramsauer et al., 2021]
by introducing a sparse Hopfield layer into deep learning models.

Organization. In Section 2, the sparse Hopfield model is introduced. In Section 3, the memory
capacity is discussed. In Section 4, experimental studies are conducted. In Section 5, concluding
discussions are provided. Additionally, related works and limitations are discussed in Appendix C.

Notations. We write ⟨a,b⟩ := aTb as the inner product for vectors a,b ∈ Rd. The index
set {1, · · · , I} is denoted by [I], where I ∈ N+. The spectral norm is denoted by ∥·∥2, which
is equivalent to the l2-norm when applied to a vector. Throughout this paper, we denote the
memory patterns (keys) by ξ ∈ Rd and the state/configuration/query pattern by x ∈ Rd, and
Ξ := (ξ1, · · · , ξM ) ∈ Rd×M as shorthand for stored memory (key) patterns {ξµ}µ∈[M ]. Moreover,
we set norm n := ∥x∥ be the norm of the query pattern, and m := Maxµ∈[M ] ∥ξµ∥ be the largest
norm of memory patterns. We also provide a nomenclature table (Table 3) in the appendix.

2 Sparse Hopfield Model
In this section, we introduce the sparse Hopfield energy from convex conjugate of entropic regularizer,
and then the sparse retrieval dynamics. In this paper we only consider the Gini entropic regularizer
corresponding to the sparsemax distribution [Martins and Astudillo, 2016].

Let x ∈ Rd represent the query pattern, and let Ξ := (ξ1, · · · , ξM ) ∈ Rd×M denote the memory
patterns. The objective of the Hopfield models is to store the memory patterns Ξ and then retrieve a
specific memory pattern ξµ based on a given query x. Consequently, any Hopfield model consist
of two main components: an energy function H(x), encoding memories into its local minima,
and a retrieval dynamics T (x), which retrieves a memory by iteratively minimizing H(x) when
initialized with a query. We provide a visualization of this procedure in Figure 3. The construction
of the energy functionH(x) is straightforward. As emphasized in [Krotov and Hopfield, 2016], the

3Note that, the proposed model’s sparsity falls under the category of sparsity-inducing normalization maps.
Consequently, the forward pass still requires O(n2) space complexity. Here, “potential computational efficiency”
refers that the computational efficiency can be enhanced if one employs efficient implementations that leverage
sparsity, such as sort operations or median-finding algorithms, to circumvent unnecessary computations, see
Appendix C and [Martins and Astudillo, 2016, Section 2] for more discussions.
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memories can be easily encoded into H(x) through the overlap-construction: H(x) = F (ΞTx),
where F : RM → R is a smooth function. This ensures that the memories {ξµ}µ∈[M ] are located
at the stationary points of H(x), since ∇xF (ΞTx)|ξµ = 0 for all µ ∈ [M ]. Different choices of
F lead to different Hopfield models, as demonstrated in [Krotov and Hopfield, 2016, Demircigil
et al., 2017, Ramsauer et al., 2021, Krotov and Hopfield, 2021]. However, finding a corresponding
retrieval dynamics, T , for a given energy H(x), is generally more challenging. This is because
T needs to satisfy two conditions to ensure successful memory retrieval: (i) To ensure consistent
retrieval, an appropriate T should monotonically minimize H(x) when iteratively applied. (ii) To
ensure accurate retrieval, an appropriate T should align its fixed points (the points where iterative
application terminates) with the stationary points ofH(x).
To this end, we introduce the sparse Hopfield model, providing a principled construction forH and
T . This model not only fulfills the aforementioned desirable properties, but also enables more robust
and faster memory retrieval compared to the modern Hopfield model [Ramsauer et al., 2021].

2.1 Sparse Hopfield Energy
Let x ∈ Rd be the query pattern, and Ξ := (ξ1, · · · , ξM ) ∈ Rd×M be the memory patterns. We
introduce the sparse Hopfield energy as

H(x) = −Ψ⋆
(
βΞTx

)
+

1

2
⟨x,x⟩ , (2.1)

with Ψ⋆(z) := 1
2∥z∥

2 − 1
2∥Sparsemax(z)− z∥2 + 1

2 , where Sparsemax(·) is defined as follows.
Let z,p ∈ RM , and ∆M := {p ∈ RM

+ |
∑M

µ pµ = 1} be the (M − 1)-dimensional unit simplex.

Definition 2.1 (Sparsemax in Variational Form [Martins and Astudillo, 2016], also see Remark F.1).
Sparsemax(z) := ArgMin

p∈∆M

∥p− z∥2 = ArgMax
p∈∆M

[
pTz−Ψ(p)

]
, (2.2)

where Ψ(p) := − 1
2

∑M
ν pν(1− pν) is the negative Gini entropy or Gini entropic regularizer.

Remark 2.1. Recall that, the variational form (2.2) is in fact general, that applies to various entropic
regularizers, as discussed in [Peters et al., 2019, Wainwright et al., 2008]. The choice of Ψ determines
the resulting sparse probability distribution. For instance, if we choose the Gibbs’ entropic regularizer
ΨGibbs = −

∑M
ν pν ln pν , (2.2) reduces to the standard softmax distribution.

Overview of Theoretical Results. At first glance, the energy function (2.1) may seem peculiar.
However, it indeed represents a non-trivial sparse Hopfield model with appealing properties, including:

(i) In response to challenge (C1) & (C2), as we shall see in Section 2.2, the energy (2.1) leads
to a sparse retrieval dynamics that not only retrieves memory by monotonically decreasing
(Lemma 2.1) to its stationary points (Lemma 2.2), but also associates with sparsemax attention
through its single-step approximation (Remark 2.2);

(ii) In response to challenge (C3), as we shall see in Section 3, it indulges fast convergence of
retrieval (Corollary 3.1.2), exponential-in-d memory capacity akin to modern Hopfield models
(Lemma 3.1). Notably, it accomplishes these with a tighter retrieval error bound (Theorem 2.1).

We reveal each of these properties in the following sections.

2.2 Sparse Retrieval Dynamics and Connection to Sparse Attention
The optimization problem ArgMaxp∈∆M

[
pTz−Ψ(p)

]
does not necessarily have a closed-form

solution for arbitrary Ψ. However, a family of Ψ has been investigated in literature [Correia et al.,
2019, Martins and Astudillo, 2016] with closed-form solutions derived, including the Sparsemax(·).

Sparsemax in Closed-Form (Proposition 1 of [Martins and Astudillo, 2016]). Let z ∈ RM . Denote
[a]+ := Max{0, a}, z(ν) the ν’th element in a sorted descending z-sequence zsorted := z(1) ≥ z(2) ≥
. . . ≥ z(M), and κ(z) := Max

{
k ∈ [M ]

∣∣ 1 + kz(k) >
∑

ν≤k z(ν)
}
. The optimization problem(s)

(2.2) has closed-form solution
Sparsemax(z) = [z− τ(z)1M ]+ , (2.3)

where τ : RM → R is the threshold function τ(z) =
[(∑

ν≤κ(z) z(ν)

)
− 1
]
/κ(z), satis-

fying
∑M

µ=1 [zµ − τ(z)]+ = 1 for all z. Notably, κ(z) = |S(z)| where S(z) = {µ ∈
[M ] | Sparsemaxµ(z) > 0} is the support set of Sparsemax(z).
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In this case, we present the following theorem to derive the convex conjugate of Ψ in closed-form:

Theorem 2.1 (Convex Conjugate of Negative Gini Entropy). Let F (p) := ⟨p, z⟩ − Ψ(p) with Ψ

being the negative Gini entropy, Ψ(p) = 1
2∥p∥

2 − 1
2 . The convex conjugate of Ψ(p) is

Ψ⋆(z) := Max
p∈∆M

F (p, z) =
1

2
∥z∥2 − 1

2
∥p⋆ − z∥2 + 1

2
, (2.4)

where p⋆ = Sparsemax(z) is given by (2.3).

Corollary 2.1.1. By Danskin’s Theorem, ∇Ψ⋆(z) = ArgMaxp∈∆M F (p, z) = Sparsemax(z).

Proof. A detailed proof is shown in Appendix E.1.
Theorem 2.1 and Corollary 2.1.1 not only provide the intuition behind the sparse Hopfield energy (2.1)
— the memory patterns are stored in local minima aligned with the overlap-function constructions (i.e.∥∥ΞTx

∥∥2 =
∑M

µ=1 ⟨ξµ,x⟩
2) in [Ramsauer et al., 2021, Demircigil et al., 2017, Krotov and Hopfield,

2016] — but also prepare us for the following corresponding sparse retrieval dynamics.

Lemma 2.1 (Sparse Retrieval Dynamics). Let t be the iteration number. The energy (2.1) can be
monotonically decreased by the following sparse retrieval dynamics over t:

T (xt) := ∇xΨ
(
βΞTx

) ∣∣
xt

= ΞSparsemax
(
βΞTxt

)
= xt+1. (2.5)

Proof Sketch. To show monotonic decreasing property, we first derive the sparse retrieval dynamics
by utilizing Theorem 2.1, Corollary 2.1.1, along with the convex-concave procedure [Yuille and
Rangarajan, 2003, 2001]. Then, we show the monotonicity of H by constructing a iterative upper
bound of H which is convex in xt+1 and thus, can be lowered iteratively by the convex-concave
procedure. A detailed proof is shown in the Appendix E.2.
Remark 2.2. Similar to [Ramsauer et al., 2021], (2.5) is equivalent to sparsemax attention [Martins
and Astudillo, 2016] when the T is applied only once, see Appendix D for more details. Importantly,
β acts as a scaling factor for the energy function, often referred to as the “inverse temperature”. It
influences the sharpness of energy landscape Equation (2.1), thereby controlling the dynamics. High
β values, corresponding to low temperatures, encourage that the basins of attraction for individual
memory patterns remain distinct, leading to easier retrieval.

Notably, since
∥∥ΞTx

∥∥2 =
∑M

µ=1 ⟨ξµ,x⟩
2, (2.5) implies that the local optimum of H are located

near the patterns ξµ. Different from previous studies on binary Hopfield models [Demircigil et al.,
2017, Krotov and Hopfield, 2016], for continuous patterns, we adopt the relaxed definition from
[Ramsauer et al., 2021]4 to rigorously analyze the memory retrieval, and the subsequent lemma.

Definition 2.2 (Stored and Retrieved). Assuming that every pattern ξµ surrounded by a sphere Sµ

with finite radius R := 1
2 Minµ,ν∈[M ] ∥ξµ − ξν∥, we say ξµ is stored if there exists a generalized

fixed point of T , x⋆
µ ∈ Sµ, to which all limit points x ∈ Sµ converge to, and Sµ ∩ Sν = ∅ for µ ̸= ν.

We say ξµ is ϵ-retrieved by T with x for an errora ϵ, if ∥T (x)− ξµ∥ ≤ ϵ.

aThe retrieval error has a naive bound ϵ := Max
{
∥x− ξµ∥,

∥∥ξµ − x⋆
µ

∥∥} by interpolating from x to ξµ.

Definition 2.2 sets the threshold for a memory pattern ξµ to be considered stored at a fixed point of T ,
x⋆
µ. However, this definition does not imply that the fixed points of T are also stationary points of the

energy functionH. In fact, monotonicity of (2.5) does not assure the existence of stationary points
of energyH [Sriperumbudur and Lanckriet, 2009]. To establish a well-defined Hopfield model, we
need two types of convergence guarantees. The first is the convergence between x⋆

µ and ξµ, which
ensures that the retrieved memory is close to the stored memory. The second is the convergence ofH
to its stationary points through the dynamics of T , which ensures that the system reaches a state of
minimal energy. The following lemma provides the convergence results for both.

Lemma 2.2 (Convergence of Retrieval Dynamics T ). SupposeH is given by (2.1) and T (x) is given
by (2.5). For any sequence {xt}∞t=0 defined by xt′+1 = T (xt′), all limit points of this sequence are
stationary points if they are obtained by iteratively applying T toH.

4Recall that a fixed point of T with respect to H is a point where x = T (x), and a generalized fixed point is
a point where x ∈ T (x). For more details, refer to [Sriperumbudur and Lanckriet, 2009].
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Proof Sketch. We verify and utilize Zangwill’s global convergence theory [Zangwill, 1969] for
iterative algorithms T , to first show that all the limit points of {xt}∞t=0 are generalized fixed points
and limt→∞H (xt) = H (x⋆), where x⋆ are some generalized fixed points of T . Subsequently, by
[Sriperumbudur and Lanckriet, 2009, Lemma 5], we show that {x⋆} are also stationary points of
Minx [H], and henceH converges to local optimum. A detailed proof is shown in Appendix E.4.
Intuitively, Lemma 2.2 indicates that the energy function converges to local optimum, i.e.
limt→∞H (xt) → H (x⋆) , where x⋆ are stationary points of H. Consequently, it offers formal
justifications for the retrieval dynamics (2.5) to retrieve stored memory patterns {ξµ}µ∈[M ]: for any
query (initial point) x, T monotonically and iteratively approaches stationary points ofH, where the
memory patterns {ξµ}µ∈[M ] are stored. As for the retrieval error, we provide the following theorem
stating that T achieves a lower retrieval error compared to its dense counterpart.

Theorem 2.2 (Retrieval Error). Let TDense be the retrieval dynamics of the dense modern Hopfield
model [Ramsauer et al., 2021]. It holds ∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥ for all x ∈ Sµ. Moreover,

∥T (x)− ξµ∥ ≤ m+ d
1/2mβ

[
κ

(
Max
ν∈[M ]

⟨ξν ,x⟩ −
[
ΞTx

]
(κ)

)
+

1

β

]
, (2.6)

where
[
ΞTx

]
(κ)

is the κth-largest element of ΞTx ∈ RM following the sparsemax definition (2.3).

Proof. A detailed proof is shown in Appendix E.3.
Interestingly, (2.6) is a sparsity dependent bound5. By denoting n := ∥x∥, the second term on the RHS
of (2.6) is dominated by the sparsity dimension κ as it can be expressed as κ

(
1− [ΞTx]

(κ)/(nm)
)
∝ ακ

with a constant 0 ≤ α ≤ 2. When ΞTx is sparse (i.e. κ is small), the bound is tighter, vice versa.
Remark 2.3 (Faster Convergence). Computationally, Theorem 2.2 implies that T requires fewer
iterations to reach fixed points with the same amount of error tolerance compared to Tdense. Namely,
T retrieves stored memory patterns faster and therefore more efficiently, as evidenced in Figure 2.
Remark 2.4 (Noise-Robustness). Moreover, in cases of contaminated patterns with noise η, i.e.
x̃ = x+ η (noise in query) or ξ̃µ = ξµ + η (noise in memory), the impact of noise η on the sparse
retrieval error (2.6) is linear, while its effect on the dense retrieval error (2.7) is exponential. This
suggests the robustness advantage of the sparse Hopfield model, as evidenced in Figure 1.

2.3 Sparse Hopfield Layers for Deep Learning
The sparse Hopfield model can serve as a versatile component for deep learning frameworks,
given its continuity and differentiability with respect to parameters. Corresponding to three types
of Hopfield Layers proposed in [Ramsauer et al., 2021], we introduce their sparse analogs: (1)
SparseHopfield, (2) SparseHopfieldPooling, (3) SparseHopfieldLayer. Layer
SparseHopfield has memory (stored or key) patterns Ξ and query (state) pattern x as in-
puts, and associates these two sets of patterns via the sparse retrieval dynamics (2.5). This layer
regards the transformer attention layer as its one-step approximation, while utilizing the sparse-
max [Martins and Astudillo, 2016] on attention matrix. Layer SparseHopfieldPooling
and Layer SparseHopfieldLayer are two variants of SparseHopfield, whose input pat-
terns are memory patterns and query patterns from previous layers or external plugin, respectively.
SparseHopfieldPooling, whose query patterns are learnable parameters, can be interpreted
as performing a pooling operation over input memory patterns. SparseHopfieldLayer, by
contrast, has learnable memory patterns that maps query patterns to hidden states with sparsemax
activation. Thus it can substitute a fully connected layer within deep learning architectures. See
(D.12) and the implementation Algorithm 1 in Appendix D, and [Ramsauer et al., 2021, Section 3]
for more details of these associations. In Section 4, we apply these layers and compare them with
their dense counterparts in [Ramsauer et al., 2021] and other baseline machine learning methods.

3 Fundamental Limits of Memory Capacity of Sparse Hopfield Models
How many patterns can be stored and reliably retrievable in the proposed model? We address this by
decomposing it into to two sub-questions and answering them separately:

(A) What is the condition for a pattern ξµ considered well stored inH, and correctly retrieved?

5Notably, ∥T (x)− ξµ∥ is also upper-bounded by a sparsity-independent but M,β-dependent bound

∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥ ≤ 2m(M − 1) exp

{
−β

(
⟨ξµ,x⟩ − Max

ν∈[M ]
⟨ξµ, ξν⟩

)}
. (2.7)
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(B) What is the number, in expectation, of the the patterns satisfying such condition?
For (A), we first introduce the notion of separation of patterns following [Ramsauer et al., 2021],

Definition 3.1 (Separation of Patterns). The separation of a memory pattern ξµ from all other memory
patterns Ξ is defined as its minimal inner product difference to any other patterns:

∆µ := Min
ν,ν ̸=µ

[⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩] = ⟨ξµ, ξµ⟩ − Max
ν,ν ̸=µ

[⟨ξµ, ξν⟩] . (3.1)

Similarly, the separation of ξµ at a given x from all memory patterns Ξ is given by
∆̃µ := Min

ν,ν ̸=µ
[⟨x, ξµ⟩ − ⟨x, ξν⟩] . (3.2)

and then the well-separation condition for a pattern being well-stored and retrieved.

Theorem 3.1 (Well-Separation Condition). Given the definition of stored and retrieved memories
in Definition 2.2, suppose the memory patterns {ξµ}µ∈[M ] are located within the sphere Sµ :={
x
∣∣ ∥x− ξµ∥ ≤ R

}
, where the radius R is finite and defined as R := 1

2 Minµ,ν∈[M ] ∥ξµ − ξν∥ for
all µ. Then, the retrieval dynamics T maps the sphere Sµ onto itself under the following conditions:
1. The initial query x is located within the sphere Sµ, i.e., x ∈ Sµ.
2. The well-separation condition is satisfied, which is given by:

∆µ ≥ mn+ 2mR−
[
ΞTx

]
(κ)
− 1

κ

(
R−m−md1/2

mβd1/2

)
.

Corollary 3.1.1. Let δ := ∥TDense − ξµ∥−∥T − ξµ∥. The well-separation condition can be expressed

as ∆µ ≥ 1
β ln

(
2(M−1)m

R+δ

)
+ 2mR, which reduces to that of the dense Hopfield model when δ = 0.

Proof Sketch. The proofs proceed by connecting ∆µ with ∥T (x)− ξµ∥. To do so, we utilize
Theorem 2.2 to incorporate the ∆µ-dependent bound on the retrieval error of both sparse and dense
Hopfield models [Ramsauer et al., 2021]. A detailed proof is shown in Appendix E.5.

Together with Lemma 2.2, the well-separated condition serves as the necessary condition for pattern
ξµ to be well-stored at the stationary points ofH, and can be retrieved with at most ϵ = R by T , as
per Definition 2.2. We make the following three observations about the blessings from sparsity.

1. In general, to appreciate the blessings of sparsity, we rearrange the well-separation condition as

∆µ ≥ 2mR+
(
mn−

[
ΞTx

]
(κ)

)
︸ ︷︷ ︸
:=αnm with 0≤α≤2

− 1

κ

(
R−m−md1/2

mβd1/2

)
, (3.3)

and observe the two competing terms, αnm and (R−m−md
1/2)/(κmβd

1/2). Sparsity proves advan-
tageous when the latter term surpasses the former, i.e. the sparse well-separation condition is
consistently lower than its dense counterpart. The condition under which sparsity benefits are more
likely to emerge (i.e., when the well-separation condition is more readily satisfied) is thereby:

1

2
Min

µ,ν∈[M ]
∥ξµ − ξν∥ ≥ md

1/2 (1 + αβnmκ) +m, with 0 ≤ α ≤ 2. (3.4)

Intuitively, the sparser ΞTx is, the easier it is for the above condition to be fulfilled.

2. Large M limit: For large M , the dense well-separation condition (Corollary 3.1.1) explodes
while the sparse one (Theorem 3.1) saturates to the first three M -independent terms. This suggests
that the hardness of distinguishing patterns can be tamed by the sparsity, preventing an increase of
∆µ with M as observed in the dense Hopfield model. We numerically confirm this in Figure 1.

3. β → ∞ Limit: In the region of low temperature, where β → ∞ and hence all patterns can be
error-free retrieved as per (2.7), we have ∆µ ≥ 2mR+ αnm with 0 ≤ α ≤ 2. Here, the second
term on the RHS represents the sparsity level of ΞTx, i.e. a smaller α indicates a higher degree of
sparsity in ΞTx. Hence, the higher the sparsity, the easier it is to separate patterns.

For (B), equipped with Theorem 3.1 and Corollary 3.1.1, we provide a lower bound for the number
of patterns being well-stored and can be at least R-retrieved in the next lemma6:

6Following the convention in memory capacity literature [Ramsauer et al., 2021, Demircigil et al., 2017,
Krotov and Hopfield, 2016], we assume that all memory patterns {ξµ} are sampled from a d-sphere of radius m.
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Lemma 3.1 (Memory Capacity Lower Bound). Let 1− p be the probability of successfully storing
and retrieving a pattern. The number of patterns randomly sampled from a sphere of radius m that
the sparse Hopfield model can store and retrieve is lower-bounded by

M ≥ √pC
d−1
4 , (3.5)

where C is the solution to C = b/W0(exp{a+ln b}) with W0(·) being the principal branch of Lambert
W function, a := 4/d−1

{
ln [2m(

√
p−1)/(R+δ)] + 1

}
and b := 4m2β/5(d−1). For sufficiently large

β, the sparse Hopfield model exhibits a larger lower bound on the exponential memory capacity
compared to its dense counterpart [Ramsauer et al., 2021]: M ≥MDense.

Proof Sketch. Our proof is built on [Ramsauer et al., 2021]. The high-level idea is to utilize the
separation of random patterns sampled from spheres [Cai and Jiang, 2012, Brauchart et al., 2018]
and the asymptotic expansion of the Lambert W function [Corless et al., 1996]. Firstly, we link the
well-separation condition to cosine similarity distance, creating an inequality for the probability of a
pattern being well-stored and retrieved. Next, we identify and prove conditions for the exponential
memory capacity M =

√
pC(d−1)/4 to hold. Finally, we analyze the scaling behaviors of C using its

asymptotic expansion and show that M ≥MDense. A detailed proof is shown in Appendix E.6.

Intuitively, the benefits of sparsity arises from the increased energy landscape separation provided
by the sparse Hopfield energy function, which enables the separation of closely correlated patterns,
resulting in a tighter well-separation condition for distinguishing such patterns and hence a larger
lower bound on the memory capacity. Moreover, the sparse Hopfield model also enjoys the properties
of fast convergence and exponentially suppressed retrieval error provided by the following corollary.

Corollary 3.1.2 (Fast Convergence and Exponentially Suppressed Retrieval Error). For any query x,
T approximately retrieves a memory pattern ξµ with retrieval error ϵ exponentially suppressed by
∆µ: ∥T (x)− ξµ∥ ≤ 2m(M − 1) exp

{
−β
(
∆µ − 2mMax

[
∥x− ξµ∥,

∥∥x− x⋆
µ

∥∥])}.
Proof. This results from Theorem 2.2, Lemma 2.2, and [Ramsauer et al., 2021, Theorem 4].

Corollary 3.1.2 suggests that, with a sufficient ∆µ, T can approximately retrieve patterns after a
single activation, allowing the integration of sparse Hopfield models into deep learning architectures
similarly to [Hoover et al., 2023, Seidl et al., 2022, Fürst et al., 2022, Ramsauer et al., 2021].

4 Proof of Concept Experimental Studies
We demonstrate the validity of our theoretical results and method by testing them on various experi-
mental settings with both synthetic and real-world datasets.

4.1 Experimental Validation of Theoretical Results
We conduct experiments to verify our theoretical findings, and report the results in Figure 1. For
the memory capacity (the top row of Figure 1), we test the proposed sparse model on retrieving
half-masked patterns comparing with the Dense (Softmax) and 10th order polynomial Hopfield
models [Millidge et al., 2022, Krotov and Hopfield, 2016] on MNIST (high sparsity), Cifar10 (low
sparsity) and ImageNet (low sparsity) datasets. For all Hopfield models, we set β = 1.7 A query is
regarded as correctly retrieved if its cosine similarity error is below a set threshold. In addition, for
the robustness against noisy queries (the bottom row of Figure 1), we inject Gaussian noises with
varying variances (σ) into the images. Plotted are the means and standard deviations of 10 runs. The
results show that the proposed sparse Hopfield model excels when memory patterns exhibit a high
degree of sparsity and the signal-to-noise ratio in patterns is low, aligning with our theoretical results.

4.2 Multiple Instance Learning Tasks
Ramsauer et al. [2021] point out that the memory-enhanced Hopfield layers present a promising
approach for Multiple Instance Learning (MIL) tasks. Multiple Instance Learning (MIL) [Ilse et al.,
2018, Carbonneau et al., 2018] is a variation of supervised learning where the training set consists
of labeled bags, each containing multiple instances. The goal of MIL is to predict the bag labels
based on the instances they contain, which makes it particularly useful in scenarios where labeling
individual instances is difficult or impractical, but bag-level labels are available. Examples of such
scenarios include medical imaging (where a bag could be an image, instances could be patches of the

7However, as pointed out in [Millidge et al., 2022], this is in fact not fair to compare modern Hopfield with
β = 1 with higher order polynomial Hopfield models.
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Figure 1: Top: Memory Capacity measured by successful half-masked retrieval rates. Bottom:
Memory Robustness measured by retrieving patterns with varying levels of Gaussian noise. For all
Hopfield models, we set β = .01/0.1/0.1 (for MNIST/CIFAR10/ImageNet) for better visualization.
A query pattern is deemed correctly retrieved if its cosine similarity error is below a set threshold.
For MNIST/CIFAR10/ImageNet datasets, we set the error thresholds to be 10/20/20% to cope with
different sparse levels in data. Plotted are the means and standard deviations of 10 runs. The results
suggest that the sparse Hopfield model excels when memory patterns exhibit a high degree of sparsity
and the signal-to-noise ratio in patterns is low.

image, and the label could indicate the presence or absence of disease) and document classification
(where a bag could be a document, instances could be the words or sentences in the document, and the
label could indicate the topic or sentiment of the document). In this subsection, we implement our
sparse Hopfield layers and applied them to MIL tasks on one synthetic and four real-world settings.
4.2.1 Synthetic Experiments
We use a synthetic MIL dataset, the bit pattern dataset, to demonstrate the effectiveness of the
sparse Hopfield model. Each bag in this synthetic dataset contains a set of binary bit strings. The
positive bag includes at least one of the positive bit patterns. We compare the performance of
the SparseHopfield and SparseHopfieldPooling to their dense counterparts and vanilla
attention [Vaswani et al., 2017]. We report the mean test accuracy of 10 runs. To demonstrate
the effectiveness of sparse Hopfield model, we vary two hyperparameters of the bit pattern dataset
corresponding to two perspectives: bag sparsity (sparsity in data) and bag size (number of memory
patterns, M ). For bag sparsity, we fix the bag size as 200, and inject from 2 to 80 positive patterns in
a positive bag, results in 1 to 40 percent of positive patterns in each positive bag. For bag size, we fix
the number of positive pattern in a bag to be 1, and vary bag size from 20 to 300. We report results of
SparseHopfieldPooling in Table 1, and implementation details in Appendix H.1.1. A more
complete version of Table 1, including the results of Hopfield and attention, is in Appendix G.
The sparse Hopfield model demonstrates a better performance across all sparsity and all bag sizes.

Table 1: Top (Bag Size): Accuracy comparison on bit pattern dataset for sparse and dense Hopfield
model. We report the average accuracy over 10 runs. The results suggest that the sparse Hopfield
model demonstrates a better performance when facing a bag size increase. Bottom (Bag Sparsity):
Performance comparison on bit pattern dataset for sparse and dense Hopfield model with varying bag
sparsity. We report the average accuracy over 10 runs. The results suggest that the sparse Hopfield
model demonstrates a better performance across all sparsity.

Bag Size 20 50 100 150 200 300

Dense Hopfield Pooling 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 76.44 ± 0.23 49.13 ± 0.01 52.88 ± 0.01
Sparse Hopfield Pooling 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 99.76 ± 0.00 99.76 ± 0.00 99.76 ± 0.00

Bag Sparsity 1% 5% 10% 20% 40%

Dense Hopfield Pooling 49.20 ± 0.00 85.58 ± 0.10 100.0 ± 0.00 100.0 ± 0.00 99.68 ± 0.00
Sparse Hopfield Pooling 73.40 ± 0.06 99.68 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

Convergence Analysis. In Figure 2, we numerically examine the convergence of the sparse and dense
Hopfield models, plotting their loss and accuracy for the bag size tasks in above on the bit pattern
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dataset. We include multiple bag sizes to assess the effect of increasing memory patterns (i.e. M )
on the loss curve. The plotted are the loss and accuracy curves of SparseHopfieldPooling.
We refer results of Hopfield and more details to Appendix G.3. The results (Figure 2) show
that, sparse Hopfield model surpasses its dense counterpart in all bag sizes. Moreover, for the same
bag size, the sparse Hopfield model always reaches the minimum validation loss faster than dense
Hopfield model, validating our Theorem 2.2.

Sparsity Generalization. We also evaluate the models’ generalization performance with shifting
information sparsity, by training dense and sparse Hopfield models with a specific bag sparsity and
testing them on the other. We report the results in Table 5 and refer more details to Appendix G.3.
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Figure 2: Top: The training loss and accuracy curve of dense and sparse Hopfield models with
different bag sizes. Bottom: The validation loss and accuracy curve of dense and sparse Hopfield
models with different bag sizes. The plotted are the mean of 10 runs. The results indicate that the
sparse Hopfield model converges faster than the dense model and also yields superior accuracy.

4.2.2 Real-World MIL Tasks
Next, we demonstrate that the proposed method achieves near-optimal performance on four real-
istic (non-sparse) MIL benchmark datasets: Elephant, Fox and Tiger for image annotation [Ilse
et al., 2018], UCSB breast cancer classification [Kandemir et al., 2014]. We use Hopfield and
SparseHopfield to construct a similar model architecture proposed in [Ramsauer et al., 2021]
and a detailed description of this experiment as well as its training and evaluating process can be
found in Appendix H.1.2. As shown in Table 2, both Sparse and Dense Hopfield achieve near-
best results on Tiger, Elephant and UCSB datasets, despite the low sparsity in data. The sparse
Hopfield model outperforms the dense Hopfield model by a small margin on three out of four datasets.

Table 2: Results for MIL benchmark datasets in terms of
AUC score. The baselines are Path encoding [Küçükaşcı and
Baydoğan, 2018], MInD [Cheplygina et al., 2015], MILES
[Chen et al., 2006], APR [Dietterich et al., 1997], Citation-
KNN [Wang and Zucker, 2000] and DD [Maron and Lozano-
Pérez, 1997]. Results for baselines are taken from [Ramsauer
et al., 2021]. The results suggest the proposed model achieves
near-optimal performance even when the data is not sparse.

Method Tiger Fox Elephant UCSB

Dense Hopfield 0.878± 0.028 0.600± 0.011 0.907± 0.022 0.880± 0.013
Sparse Hopfield 0.892± 0.021 0.611± 0.010 0.912± 0.016 0.877± 0.009

Path encoding 0.910± 0.010 0.712± 0.014 0.944± 0.007 0.880± 0.022
MInD 0.853± 0.011 0.704± 0.016 0.936± 0.009 0.831± 0.027
MILES 0.872± 0.017 0.738± 0.016 0.927± 0.007 0.833± 0.026
APR 0.778± 0.007 0.541± 0.009 0.550± 0.010
Citation-kNN 0.855± 0.009 0.635± 0.015 0.896± 0.009 0.706± 0.032
DD 0.841 0.631 0.907

5 Conclusion
We present a sparse Hopfield model
with a memory-retrieval dynam-
ics that corresponds to the sparse-
structured attention mechanism. This
model is capable of merging into
deep learning architectures with data-
dependent sparsity. Theoretically, we
introduce a principled construction for
modern Hopfield models, based on
the convex conjugate of different en-
tropy regularizers. It allows us to eas-
ily recover the dense modern Hopfield
model [Ramsauer et al., 2021] ] using
Gibbs entropy. Moreover, we intro-
duce the sparse Hopfield model using
the Gini entropic regularizer, and explore its theoretical advantages, delineating conditions that favor
its use. Empirically, we demonstrate our theoretical results and methodology to be effective on
various synthetic and realistic settings. This work extends the correspondence between artificial and
biological neural networks to sparse domain, potentially paving the way for future Hopfield-based
methodologies and bio-inspired computing systems.
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A Nomenclature Table

We summarize our notations in the following table for easy reference.

Table 3: Mathematical Notations and Symbols
Symbol Description

⟨a,b⟩ Inner product for vectors a,b ∈ Rd

[I] Index set {1, · · · , I}, where I ∈ N+

∥·∥2 Spectral norm, equivalent to the l2-norm when applied to a vector

d Dimension of patterns
M Number of stored memory patterns
β A scaling factor of the energy function that controls the learning dynamics

x State/configuration/query pattern in Rd

ξ Memory patterns (keys) in Rd

Ξ Shorthand for M stored memory (key) patterns {ξµ}µ∈[M ] in Rd×M

ΞTx M -dimensional overlap vector (⟨ξ1,x⟩ , · · · , ⟨ξµ,x⟩ , · · · , ⟨ξM ,x⟩) in RM[
ΞTx

]
κ

The κ-th element of ΞTx

n Norm of x, denoted as n := ∥x∥
m Largest norm of memory patterns, denoted as m := Maxµ∈[M ] ∥ξµ∥
κ The number of non-zero element of Sparsemax, defined in (2.3)

R The minimal Euclidean distance across all possible pairs of memory patterns, R := 1
2 Minµ,ν∈[M ] ∥ξµ − ξν∥

Sµ The sphere centered at the memory pattern ξµ with finite radius R
x⋆
µ The fixed point of T covered by Sµ, i.e. x⋆

µ ∈ Sµ

∆µ The separation of a memory pattern ξµ from all other memory patterns Ξ, defined in (3.1)
∆̃µ The separation of ξµ at a given x from all memory patterns Ξ, defined in (3.2)

B Broader Impacts and Future Directions: Brain Science and Foundation
Models

The primary theme of our research is to perceive any data representation (set of patterns) as analogous
to the neural responses of a global brain reacting to a vast range of external stimuli (queries). This
perspective presents exciting opportunities to study large generative foundational models, such as
large language models, within a rigorous scientific framework inspired by contemporary brain science
research.

We believe this work could be impactful in several respects, even though it is foundational research
and not tied to specific applications: (Cognition.) This research could contribute to our understanding
of a memory-enhanced model’s predictive capacity when given either in-context input (like historical
data) or external stimuli (such as real-time events). (Memory.) It may also shed light on the inherent
limits of artificial neural networks’ memorization capabilities and how to augment them with external
memory modules for rapid responses to potential external stimuli. (Network.) This research could
enable models to better assess the intricate network of cross-sectional brain activity among different
variables and infer its dynamic structural alterations to identify possible systematic properties.

C Related Works and Limitations

Sparse Hopfield Models. Our work is closely related to and motivated by [Földiak, 1990], which
proposes a local anti-Hebbian learning rule for sparse representations in associative memory networks.
This rule enhances storage capacity and retrieval capabilities but has limitations: (i) fixed sparsity
based on local similarity of receptive fields, (ii) difficulty in scaling up and integration with modern
DNNs [Makhzani and Frey, 2015], (iii) lack of a solid theoretical foundation for convergence and
stability, and (iv) inherently unsupervised retrieval dynamics, limiting its applicability for supervised
learning or other paradigms like reinforcement learning or semi-supervised learning. On the other
hand, another line of related work, not specifically focusing on sparsifying Hopfield models, centers
on sparse coding [Palm, 2013, Olshausen and Field, 1997], introducing sparsity to associative memory
models through thresholding memory patterns. These studies offer insights into the relationship
between the sparseness of the stored memory patterns and the robustness of the network but sufferers
from the issues related to scalability, sparsity level bias, and noise vulnerability [Mairal et al.,
2010, Rubinstein et al., 2010, Elad, 2010, Olshausen and Field, 1997]. In contrast, our approach is
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theoretically grounded and has data-dependent sparsity leading to better scalability, more meaningful
and robust representations of patterns and allows the model to focus on the most relevant information
for each specific instance.

Hopfield Models and Connection to Attention. Hopfield Models [Hopfield, 1984, 1982, Krotov
and Hopfield, 2016] have seen renewed interest in the machine learning community due to advances
in memory storage capacity understanding [Krotov and Hopfield, 2016, Demircigil et al., 2017], archi-
tectural innovations [Hoover et al., 2023, Seidl et al., 2022, Fürst et al., 2022, Ramsauer et al., 2021],
and biological plausibility [Kozachkov et al., 2023, Krotov and Hopfield, 2021]. Notably, Modern
Hopfield Networks [Ramsauer et al., 2021]8, a new subclass, highlight the equivalence9 between
their memory retrieval dynamics and attention mechanisms in transformers. With this hindsight, it
becomes clear that transformers and modern Hopfield models share some high-level similarities, as
well as differences. Both architectures are designed for denoising input, with transformers typically
pre-trained on masked-token tasks and the modern Hopfield model aimed at completing incomplete
or contaminated patterns. However, the modern Hopfield models are recurrent networks with a global
energy function that ensures convergence to a fixed-point attractor, while transformers are generally
viewed as feed-forward networks without such dynamics. It is natural to ask whether such equivalence
is fundamental. Although, apart from Hopfield-side investigations [Hoover et al., 2023, Krotov and
Hopfield, 2021, Ramsauer et al., 2021], there have been studies viewing transformers as dynamical
systems, including the deep equilibrium models [Bai et al., 2019], and unfolded optimization [Yang
et al., 2022], none exhibit similar converge-to-memory dynamics as in Hopfield models (hence
missing the connection between dynamical memory retrieval and transformers), nor do they address
sparsity. Building on the established equivalence in [Ramsauer et al., 2021], our work serves as an
initial attempt to push such equivalence toward sparse models, both theoretically and empirically. It
lays the groundwork for future Hopfield-based methodologies, architecture designs and biological
computers (as in [Kozachkov et al., 2023]).

Sparse Attention. Attention-based seq2seq models excel in various applications like large lan-
guage models [Chowdhery et al., 2022, Brown et al., 2020], time series prediction [Zhou et al.,
2022, 2021], and biomedical science [Ji et al., 2021], primarily due to their versatility in framing
tasks as source-to-target sequence transformations with potentially varying lengths. However, the
original transformer architecture utilizes a dense, quadratic attention score matrix, which can be
computationally demanding (withO(n2) complexity for input sequence length n), memory-intensive,
and challenging to interpret for long sequences. To combat these issues, there is a large amount of
literature works leverages various sparsifying methods for attention and transformers to enhance
computational efficiency while preserving the models’ expressiveness, see [Tay et al., 2022] for an
overview. Here, we classify sparse Transformers into two distinct categories based on the different
kinds of sparsities. The first category focuses on structured-sparsity [Beltagy et al., 2020, Qiu et al.,
2019, Child et al., 2019], which involves creating a sparse attention score matrix in a pre-determined
manner. In these approaches, each token in the sequence attends to a fixed subset of other tokens,
rather than the entire sequence. The second category obtains sparsity through the sparsity-inducing
normalization maps [Peters et al., 2019, Correia et al., 2019, Krotov and Hopfield, 2016] that encour-
age the models to focus on a subset of relevant input elements, thereby fostering sparsity, scalability
and interpretability. Compared to the first category, while these approaches still have O(n2) space
complexity, they offer the advantage of producing sparsity patterns that are more adaptive to the data.
Our work is closely related to the second and utilizes sparsity-inducing alternatives to the softmax
function in modern Hopfield models.

C.1 Limitations

Since our model aligns with sparsemax attention, it also grapples with O(d2) complexity, a charac-
teristic typical of the sparsity-inducing normalization map category of sparse attention. In addition,
we opt not to impose any assumptions on the data (patterns) to maintain the general applicability of

8Also see the well-written blog post [Brandstetter, 2021].
9While this equivalence only holds when the retrieval dynamics is applied exactly once, as originally shown

in [Ramsauer et al., 2021] and later emphasized in [Krotov and Hopfield, 2021], it allows us to view modern
Hopfield models as generalized attentions with additional functionalities and hence opens new avenues for
Hopfield-based architecture designs.
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our model. This decision, however, prevents us from providing a rigorous characterization of how
data-dependent sparsity explicitly impacts retrieval error, the well-separation condition, and memory
capacity. Specifically, a detailed analysis of

[
ΞTx

]
(κ)

is a problem of order statistics [David and
Nagaraja, 2004] that hinges on the distribution of patterns. Instead, we offer qualitative discussions
in Section 3 to provide insights into the behavior of the sparse model under various conditions, aiding
in a better understanding and application of the model.

D Modern Hopfield Model and Its Connection to Attention Mechanism

Ramsauer et al. [2021] generalize the exponential-interaction-based energy function proposed in
[Demircigil et al., 2017] to continuous patterns and states with a strong link the attention mechanism.
In this section, we provide an overview for both of them and then draw the connection of the modern
Hopfield model to attention mechanism.

Figure 3: Visualizing Hopfield Models. Let x ∈ Rd represent the query pattern, and let Ξ :=
(ξ1, · · · , ξM ) ∈ Rd×M denote the memory patterns. The objective of the Hopfield models is to store
the memory patterns Ξ and then retrieve a specific memory pattern ξµ based on a given query x. They
achieve these by embedding the memories Ξ in the energy landscapeH(x) of a physical system (e.g.,
the Ising model in [Hopfield, 1982] and its higher-order generalizations [Lee et al., 1986, Peretto
and Niez, 1986, Newman, 1988]), where each memory ξµ corresponds to a local minimum. When
a query x is presented, the model initiates energy-minimizing retrieval dynamics T at the query x,
which then navigate the energy landscape to find the nearest local minimum, effectively retrieving the
memory most similar to the query.

D.1 Modern Hopfield Model

We first introduce the log-sum-exponential (lse) function for any given vector z = (z1, · · · , zM ) and
β > 0:

lse (β, z) :=
1

β
log

(
M∑
µ=1

exp{βzµ}

)
, (D.1)

which is an important representation of the softmax function which can be derived by considering the
“argmax function” under entropy regularization, see [Gao and Pavel, 2017] and references therein.

Exponential Binary Hopfield Model. With lse(·), the exponential-Hopfield model for binary
patterns ξ,x ∈ {±1}d proposed in [Demircigil et al., 2017] can be written as, denoting Ξ :=(
ξ1, · · · , ξM

)
,

H(x) = −
M∑
µ=1

exp{⟨ξµ,σ⟩} = − exp
{
lse
(
1,ΞTσ

)}
, (D.2)

which leads to the super-linear memory capacity of M ∝ 2d/2.
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Modern Hopfield Model. For continuous patterns x, {ξµ} ∈ Rd, Ramsauer et al. [2021] propose
the continuous10 modern Hopfield model

H(x) := − lse
(
1,ΞTx

)
+

1

2
⟨x,x⟩+ 1

β
logM +

1

2
m2, (D.3)

with retrieval dynamics

xnew = TDense(x) = Ξ · Softmax
(
βΞTx

)
, (D.4)

where 1
2 ⟨x,x⟩ is a regularizer introduced for ensuring configuration vector x being finite, and

m := maxµ ∥ξµ∥ is the largest norm of memory patterns. Moreover, they show that (i) the modern
Hopfield (D.3) has an exponential memory capacity in d, (ii) the retrieval dynamics (D.4) can
consistently retrieve patterns with high accuracy with only one step, and (iii) surprisingly, the
retrieval dynamics (D.4) is connected to the attention mechanism in transformer giving rise to a new
methodology — the Hopfield DNN layer.

D.2 Memory Retrieval Dynamics TDense ↔ Self-Attention Mechanism

Following [Ramsauer et al., 2021, Brandstetter, 2021], we say X and Ξ are in the associative space
(embedded space), as they are mapped from the raw query R and Y memory patterns, respectively,
via

XT = RWQ := Q, (D.5)

ΞT = YWK := K, (D.6)

with some WQ and WK . Therefore, we can express TDense as

(Qnew)
T
= KT Softmax

(
βKQT

)
. (D.7)

Taking transpose to above, we have

Qnew = Softmax
(
βQKT

)
K. (D.8)

Projecting K to V with WV , we have

Z := QnewWV = Softmax
(
βQKT

)
KWV (D.9)

= Softmax
(
βQKT

)
V, (D.10)

which leads to the self-attention mechanism.

Plugging back the raw patterns R and Y, we arrive the foundation of the Hopfield layer,

Z = Softmax
(
βRWQW

T
KYT

)
YWKWV . (D.11)

The same construction applies to the sparse retrieval dynamics (2.5),

Z ′ = Sparsemax
(
βRW′

QW
′T
KYT

)
YW′

KW′
V . (D.12)

resulting in a sparse Hopfield layer that can be seamlessly integrated into deep learning architectures.

D.3 Algorithm of Multi-Step SparseHopfield Layer

Here, we present an algorithm for implementing the SparseHopfield layer with multi-step updates
(i.e. multiple iterative retrievals). The algorithm, summarized in Algorithm 1 below, outlines the
process for U update steps. Similar to [Ramsauer et al., 2021], the SparseHopfield takes as input
the matrices R,Y, and the weight matrices W′

Q,W
′
K ,W′

V .

Here we explain the usage of the above algorithm w.r.t. different settings.

1. Memory Retrieval. The memory retrieval is a learning-free setting. Thus, we can exclude
the use of weight matrices WK ,WQ,WV (by setting them to identity matrices). And let
the input (corrupted image) to be our R, stored patterns as Y for retrieval.

10Note that, there are also many continuous Hopfield models prior than [Ramsauer et al., 2021], including
[Krotov and Hopfield, 2016, Hopfield, 1984].
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Algorithm 1 Multi-Step SparseHopfield Layer

Require: U ∈ R ≥ 1,R,Y.
Q← RW′

Q

for i→ 1 to U do
Qnew ← Sparsemax

(
βQW′T

KYT
)
YW′

V W
′
K Hopfield Update as D.12

Q← Qnew

end for
return Q

2. SparseHopfield. The SparseHopfield has two inputs, R,Y. Since the
SparseHopfield can be used to replace attention mechanism in models, we make the
weight matrices W′

K ,W′
Q,W

′
V learnable, and R,Y,Y be the source of query, key, value,

respectively. Note that the self-attention-liked mechanism can be realized by setting R = Y.
3. SparseHopfieldPooling. The SparseHopfieldPooling layer has one input, Y, where

Q is the learnable prototype pattern and fixed during inference, and Y is the stored patterns
we want to perform pooling over. Note that the Q here is independent from the input and
can be seen as part of the learnable parameter of the SparseHopfieldPooling layer. Here
since we replace the query pattern (RW′

Q) with a static prototype pattern Q, the learnable
weight matrices here will only be W′

K ,W′
V .

4. SparseHopfieldLayer. The SparseHopfieldLayer layer has one input, R. Where R
is the query pattern. And we have learnable weight matrices W′

K ,W′
V served as our stored

patterns and pattern projections, leading our key and value independent to the input. In other
words, following the notation in Algorithm 1, Y can be seen as an identity matrix.
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E Proofs of Main Text

E.1 Theorem 2.1

Proof of Theorem 2.1.

Max
p∈∆d

[
⟨p, z⟩ − 1

2
∥p∥2 + 1

2

]
= Max

p∈∆d

[
1

2
∥z∥2 + ⟨p, z⟩ − 1

2
∥p∥2 − 1

2
∥z∥2 + 1

2

]
(E.1)

= Max
p∈∆d

[
1

2
∥z∥2 + 1

2
− 1

2
∥p− z∥2

]
(E.2)

=
1

2
∥z∥2 + 1

2
− Min

p∈∆d

[
1

2
∥p− z∥2

]
(E.3)

=
1

2
∥z∥2 − 1

2
∥p⋆ − z∥2 + 1

2
= Ψ⋆(z), (E.4)

with p⋆ given by (2.3).

E.2 Lemma 2.1

Proof of Lemma 2.1. To show monotonic decreasing property of the energy (2.1), we first derive the
sparse retrieval dynamics by utilizing the aforementioned Theorem 2.1, Corollary 2.1.1, along with
the convex-concave procedure [Yuille and Rangarajan, 2003, 2001]. Then, we show the monotonicity
of H by constructing an iterative upper bound of H which is convex in xt+1 and thus, lowered
iteratively by the CCCP method.

By convex conjugate, Ψ∗, the conjugate convex of Ψ, is always convex, and hence −Ψ∗ is a concave
function. Therefore, the energy function H is by construction the sum of the convex function
H1(x) :=

1
2 ⟨x,x⟩ and the concave functionH2(x) := −Ψ⋆

(
ΞTx

)
. In addition,H is differentiable

by definition.

Applying the convex-concave procedure toH gives

∇xH1 (xt+1) = −∇xH2 (xt) , (E.5)

which leads to

xt+1 = ∇xΨ(Ξxt) = ΞSparsemax
(
ΞTxt

)
, (E.6)

by Theorem 2.1 and Corollary 2.1.1.

Following [Yuille and Rangarajan, 2003, 2001], we show the monotonic decreasing of (2.1) over t
with by considering the problem of energy minimization:

Min
x

[H(x)] = Min
x

[H1(x) +H2(x)] , (E.7)

which, in the convex-concave procedure, is solved by iteratively computing

xt+1 ∈ ArgMin
x

[H1(x) + ⟨x,∇xH2 (xt)⟩] , (E.8)

for all t. The intuition behind this is to linearize the concave H2 around the current iteration’s
solution xt, makingH1(xt+1) + ⟨xt+1,∇xH2(xt)⟩ convex in xt+1.

By convexity and concavity ofH1 andH2, we have

H1(x) ≥ H1(y) + ⟨(x− y) ,∇xH1(y)⟩ , (E.9)
H2(x) ≤ H2(y) + ⟨(x− y) ,∇xH2(y)⟩ , (E.10)

for all x,y. Therefore, it holds

H(x) = H1(x) +H2(x) (E.11)
≤ H1(x) +H2(y) + ⟨(x− y),∇xH2(y)⟩ := HU (x,y) , (E.12)

whereHU is the upper bound ofH. Then, for each iteration t, we have

xt+1 ∈ ArgMin
x

[HU (x,xt)] = ArgMin
x

[H1(x) + ⟨x,∇xH2(xt)⟩] , (E.13)
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which lowers the upper boundHU iteratively and hence decreases the value ofH monotonically, i.e.
H(xt+1) ≤ HU (xt+1,xt)

(
By (E.12)

)
≤ HU (xt,xt)

(
Set x = y in (E.12)

)
= H(xt), (E.14)

for all t. This completes the proof thatH can be monotonically decreased by T (x) given by (2.5).

E.3 Theorem 2.2

Proof of Theorem 2.2. Let TDense be the retrieval dynamics of the dense modern Hopfield model
[Ramsauer et al., 2021], and ∥T (x)− ξµ∥ and ∥TDense(x)− ξµ∥ be the retrieval error of sparse and
dense Hopfield model, respectively.

We observe
∥T (x)− ξµ∥ − ∥TDense(x)− ξµ∥

=

∥∥∥∥∥
κ∑

ν=1

ξν
[
Sparsemax

(
βΞTx

)]
ν
− ξµ

∥∥∥∥∥−
∥∥∥∥∥

κ∑
ν=1

ξν
[
Softmax

(
βΞTx

)]
ν
− ξµ

∥∥∥∥∥ (E.15)

≤

∥∥∥∥∥
κ∑

ν=1

[
Sparsemax(βΞTx)

]
ν
ξν

∥∥∥∥∥−
∥∥∥∥∥

κ∑
ν=1

[
Softmax

(
βΞTx

)]
ν
ξν

∥∥∥∥∥ (E.16)

≤ 0, (E.17)
which gives

∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥. (E.18)

Next, we provide an upper bound of the sparse retrieval error for a query x ∈ Sµ given memory
patterns {ξν}ν∈[M ].

According to the (2.3), it holds

[Sparsemax
(
βΞTx

)
]µ ≤

[
βΞTx

]
µ
−
[
βΞTx

]
(κ)

+
1

κ
, (E.19)

for all µ ∈ [M ]. Then, the sparse retrieval error is

∥T (x)− ξµ∥ =
∥∥ΞSparsemax

(
βΞTx

)
− ξµ

∥∥ =

∥∥∥∥∥
κ∑

ν=1

ξ(ν)
[
Sparsemax

(
βΞTx

)]
(ν)
− ξµ

∥∥∥∥∥
≤ m+mβ

∥∥∥∥∥
κ∑

ν=1

([
ΞTx

]
(ν)
−
[
ΞTx

]
(κ)

+
1

βκ

)
ξ(ν)

m

∥∥∥∥∥ (
By (E.19)

)
= m+ d

1/2mβ

[
κ∑

ν=1

([
ΞTx

]
(ν)
−
[
ΞTx

]
(κ)

+
1

βκ

)]
(E.20)

≤ m+ d
1/2mβ

[
κ

(
Max
ν∈[M ]

⟨ξν ,x⟩ −
[
ΞTx

]
(κ)

)
+

1

β

]
. (E.21)

E.4 Lemma 2.2

In order to prove Lemma 2.2, we need the following two auxiliary lemmas.

Lemma E.1 ([Gunawardana et al., 2005], Proposition 7). Let xt ∈ Xt and xt+1 ∈ Xt+1. Given a
real-valued continuous functionHU on Xt ×Xt+1, define the point-to-set map T : Xt → Xt+1 by

T (xt) := ArgMin
x′
t+1∈Xt+1

HU (xt,x
′
t+1) (E.22)

= {xt+1 | HU (xt,xt+1) ≤ HU (xt,x
′
t+1),∀x′

t+1 ∈ Xt+1}. (E.23)

Then T is a closed map at xt if T (x) is non-empty.
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Lemma E.2 ([Sriperumbudur and Lanckriet, 2009], Lemma 5). Recall a fixed point of T w.r.t. H is
a point for which x = T (x), and a generalized fixed point is a point for which x ∈ T (x). Suppose
x⋆ is a generalized fixed point of T , then, x⋆ is a stationary point of the minimization problem (E.7).

Proof of Lemma 2.2. From Zangwill global convergence theory for iterative algorithms [Zangwill,
1969], all limit points of {xt}∞t=0 are fixed points11, if the following three conditions are satisfied for
the energy functionH and the retrieval dynamics T .

(i) For any sequence {xt}∞t=0 with starting point x0 ∈ Sµ, all points are in the same compact
set Sµ.

(ii) H is monotonically decreased by T (x), i.e. H(xt+1) ≤ H(xt),∀xt+1 = T (xt).

(iii) For all t, ifH(xt+1) < H(xt), T is closed at xt.

Furthermore, limt→∞H (xt) = H (x⋆) for all limit points x⋆.

From Definition 2.2, since Sµ with finite radius R is bounded and closed, every Sµ is a compact set.
Namely, for any sequence {xt}∞t=0, all points are embedded in the sphere Sµ, which is a compact
set. Therefore, condition (i) is automatically satisfied. Then condition (ii), the monotonic descent
property of {xt}∞t=0, has been analyzed in the original paper of CCCP [Yuille and Rangarajan, 2003].
By our definition onH1 andH2, we haveHU (x,y) := H1(x) +H2(y) + ⟨(x− y),∇xH2(y)⟩ is
continuous in x and y. Consequently, by Lemma E.1, the non-empty assumption of the point-to-set
map T guarantees that T is closed at xt and so satisfies condition (iii) for generalized fixed points.
Therefore, by Zangwill global convergence theory, all the limit points of {xt}∞t=0 are generalized fixed
points and limt→∞H (xt) = H (x⋆), where x⋆ are some generalized fixed points of T . Furthermore,
based on the results of Lemma E.2, x⋆ are also the stationary points of the minimization problem
(E.7). Therefore, the energy function is ensured to converge to local optimum.

11Recall that, a fixed point of T is defined as x⋆ := {x | x = T (x⋆)}.

24



E.5 Theorem 3.1 and Corollary 3.1.1

Proof of Theorem 3.1. Recall n := ∥x∥. By Definition 3.1, we have

Max
µ∈[M ]

⟨ξµ,x⟩ = ⟨ξν ,x⟩ − ∆̃ν , (E.24)

thereby obtaining

∥T (x)− ξµ∥ ≤ m+ d
1/2mβ

[
κ

(
Max
ν∈[M ]

⟨ξν ,x⟩ −
[
ΞTx

]
(κ)

)
+

1

β

]
(E.25)

= m+ d
1/2mβ

[
κ
(
⟨ξµ,x⟩ − ∆̃µ −

[
ΞTx

]
(κ)

)
+

1

β

]
(E.26)

Since n := ∥x∥ and m := maxµ ∥ξµ∥, we have

m+ d
1/2mβ

[
κ
(
⟨ξµ,x⟩ − ∆̃µ −

[
ΞTx

]
(κ)

)
+

1

β

]
(E.27)

≤ m+ d
1/2mβ

[
κ
(
mn− ∆̃µ −

[
ΞTx

]
(κ)

)
+

1

β

]
(E.28)

Then, by the Cauchy-Schwartz inequality

|⟨ξµ, ξµ⟩ − ⟨x, ξµ⟩| ≤ ∥ξµ − x∥ · ∥ξµ∥ ≤ ∥ξµ − x∥m, ∀µ ∈ [M ], (E.29)

we observe that ∆̃µ can be expressed in terms of ∆µ:

∆̃µ = Min
ν,ν ̸=µ

[⟨x, ξµ⟩ − ⟨x, ξν⟩+ (⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩)− (⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩)] (E.30)

≥ Min
ν,ν ̸=µ

[⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩+ (⟨ξµ, ξν⟩ − ⟨x, ξν⟩)− (⟨ξµ, ξµ⟩ − ⟨x, ξµ⟩)](
By Cauchy-Schwarz

)
= ∆µ − 2∥ξµ − x∥m = ∆µ − 2mR,

(
By x ∈ Sµ

)
where R is radius of the sphere Sµ. Inserting the bound on ∆̃µ , we obtain

∥T (x)− ξµ∥ ≤ m+ d
1/2mβ

[
κ
(
mn−∆µ + 2mR−

[
ΞTx

]
(κ)

)
+

1

β

]
. (E.31)

For T to be a mapping from Sµ to Sµ, we obtain the inequality:

m+ d
1/2mβ

[
κ
(
mn−∆µ + 2mR−

[
ΞTx

]
(κ)

)
+

1

β

]
≤ R, (E.32)

which gives

∆µ ≥ mn+ 2mR−
[
ΞTx

]
(κ)
− 1

κ

(
R−m−md1/2

mβd1/2

)
. (E.33)

Therefore, as long as ∆µ satisfies this inequality, T is a mapping from Sµ onto itself.

Proof of Corollary 3.1.1. Let TDense be the retrieval dynamics of the dense modern Hopfield model
[Ramsauer et al., 2021], and ϵSparsemax := ∥T (x)− ξµ∥ and ϵDense := ∥TDense(x)− ξµ∥ be the
retrieval error of sparse and dense Hopfield model, respectively.

First, let’s recall Theorem 2.2, which states that

ϵSparsemax = ∥T (x)− ξµ∥ ≤ ϵDense = ∥TDense(x)− ξµ∥. (E.34)

Next we want to find the lower bound of separation ∆µ such that T is a mapping from Sµ onto Sµ.
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To link ∆µ to T , we first bound ϵDense via [Ramsauer et al., 2021, Lemma A.4]:

ϵDense = ∥TDense(x)− ξµ∥ (E.35)

=

∥∥∥∥∥ξµ −
M∑
ν=1

[Softmax(βΞTx)]νξν

∥∥∥∥∥ (E.36)

=

∥∥∥∥∥∥
(
1−

[
Softmax(βΞTx)

]
µ

)
ξµ −

M∑
ν=1,ν ̸=µ

[
Softmax(βΞTx)

]
ν
ξν

∥∥∥∥∥∥ (E.37)

≤ ϵ̃∥ξµ∥+
ϵ̃

M − 1

M∑
ν=1,ν ̸=µ

∥ξν∥ (E.38)

≤ ϵ̃

m+
1

M − 1

M∑
ν=1,ν ̸=µ

m

 (E.39)

≤ 2ϵ̃m, (E.40)

where ϵ̃ := (M − 1) exp
{
−β∆̃µ

}
= (M − 1) exp

{
−β
(
⟨ξµ,x⟩ −Maxν∈[M ] ⟨ξµ, ξν⟩

)}
and the

inequality[
Softmax(βΞTx)

]
ν
=

exp{β (⟨x, ξν⟩ − ⟨x, ξµ⟩)}
1 +

∑
ν′ ̸=µ exp{β (⟨x, ξν′⟩ − ⟨x, ξµ⟩)}

≤ exp
{
−β∆̃µ

}
, (E.41)

is used in the fourth line.

Then, by the Cauchy-Schwartz inequality

|⟨ξµ, ξµ⟩ − ⟨x, ξµ⟩| ≤ ∥ξµ − x∥ · ∥ξµ∥ ≤ ∥ξµ − x∥m, ∀µ ∈ [M ], (E.42)

we observe that ∆̃µ can be expressed in terms of ∆µ:

∆̃µ = Min
ν,ν ̸=µ

[⟨x, ξµ⟩ − ⟨x, ξν⟩+ (⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩)− (⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩)] (E.43)

≥ Min
ν,ν ̸=µ

[⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩+ (⟨ξµ, ξν⟩ − ⟨x, ξν⟩)− (⟨ξµ, ξµ⟩ − ⟨x, ξµ⟩)](
By Cauchy-Schwarz

)
= ∆µ − 2∥ξµ − x∥m = ∆µ − 2mR,

(
By x ∈ Sµ

)
where R is radius of the sphere Sµ.

Hence, combining the bound from (E.40) with (E.34) results in

∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥ ≤ 2ϵ̃m (E.44)

= 2(M − 1) exp
{
−β∆̃µ

}
m (E.45)

≤ 2(M − 1) exp{−β (∆µ − 2mR)}m. (E.46)

Therefore, given δ := ∥TDense(x)− ξµ∥ − ∥T (x)− ξµ∥ ≤ 0, we have

∥T (x)− ξµ∥ ≤ 2(M − 1) exp{−β (∆µ − 2mR+ δ)}m− δ ≤ ∥TDense(x)− ξµ∥. (E.47)

For T to be a mapping from Sµ onto Sµ, it is sufficient to have

2(M − 1) exp{−β(∆µ − 2mR)}m− δ ≤ R, (E.48)

which leads to

∆µ ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR. (E.49)
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E.6 Lemma 3.1

We begin with a helper lemma.

Lemma E.3 ([Ramsauer et al., 2021]). Given real numbers a, b ∈ R. If the equation

ac+ c ln c− b = 0, (E.50)

holds, then the solution is

c =
b

W0(exp(a+ ln b))
. (E.51)

Proof. Starting from the given equation, we can rearrange and solve for c as follows:

ac+ c ln c− b = 0,

a+ ln c =
b

c
,

b

c
+ ln

(
b

c

)
= a+ ln b,

b

c
exp

(
b

c

)
= exp(a+ ln b),

b

c
= W0(exp(a+ ln b)),

c =
b

W0(exp(a+ ln b))
.

This completes the proof.

Then we present the proof.

Proof of Lemma 3.1. Equipped with ∆µ ≥ 1
β ln

(
2(M−1)m

R+δ

)
+ 2mR from Corollary 3.1.1, we first

write down the probability of success storage and retrieval, i.e. minimal separation ∆min satisfies
well-separation condition.

Let ∆min = Minµ∈[M ] ∆µ, and θµν be the angle between two patterns ξµ and ξν . Intuitively,
θµν ∈ [0, π] represent the pairwise correlation of two patterns the two patterns.

We have

∆min ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR, (E.52)

and

∆min = Min
1≤µ≤ν≤M

[
m2 (1− cos(θµν))

]
= m2 [1− cos(θmin)] , (E.53)

where θmin := Min1≤µ≤ν≤M θµν ∈ [0, π]. Then, it holds

m2 [1− cos(θmin)] ≥
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR. (E.54)

With Corollary 3.1.1 , we write down the probability of success storage and retrieval as

P

(
∆µ ≥

1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

)
= 1− p. (E.55)

By (E.54), we have

P

(
m2 [1− cos(θmin)] ≥

1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

)
= 1− p. (E.56)
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By [Olver et al., 2010, (4.22.2)], for 0 ≤ cos(θmin) ≤ 1, cos(θmin) can be upper bounded by:

cos(θmin) ≤ 1− θ2min

5
. (E.57)

It holds

P

(
m2θ2min

5
≥ 1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

)
= 1− p, (E.58)

which can be rewritten as

P

(
M

2
d−1 θmin ≥

√
5M

2
d−1

m

[
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

] 1
2

)
= 1− p. (E.59)

Here, M 2/d−1 is introduced for later convenience.

Let

ωd :=
2πd+1/2

Γ
(
d+1
2

) , (E.60)

be the surface area of a d-dimensional unit sphere is, where Γ(·) represents the gamma function.

By [Brauchart et al., 2018, Lemma 3.5], we obtain

P

(
M

2
d−1 θmin ≥

√
5M

2
d−1

m

[
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

] 1
2

)
= 1− p

≥ 1− 1

2
γd−15

d−1
2 M2m−(d−1)

[
1

β
ln

(
2(M − 1)m

R+ δ

)
+ 2mR

] d−1
2

, (E.61)

where γd is defined as the ratio of surface areas of (d− 1)- and d-dimensional unit sphere:

γd :=
1

d

ωd−1

ωd
=

1

d
√
π

Γ
(
d+1
2

)
Γ
(
d
2

) . (E.62)

Recall d,M ∈ N+, p ∈ [0, 1]. With some real value C ∈ R, it holds

M =
√
pC

d−1
4 . (E.63)

From (E.61), we have

5
d−1
2

(√
pC

d−1
4

)2
m−(d−1)

{
1

β
ln

2
(√

pC
d−1
4 − 1

)
m

R+ δ

+
1

β

} d−1
2

− p ≤ 0, (E.64)

which leads to

5
d−1
2 C

d−1
2 m−(d−1)

{
1

β
ln

2
(√

pC
d−1
4 − 1

)
m

R+ δ

+
1

β

} d−1
2

≤ 1. (E.65)

To apply Lemma E.3, we first rearrange (E.65) as

5C

m2β

{
ln

2
(√

pC
d−1
4 − 1

)
m

R+ δ

+ 1

}
− 1 ≤ 0, (E.66)

and then identify

a :=
4

d− 1

{
ln

[
2m(
√
p− 1)

R+ δ

]
+ 1

}
, b :=

4m2β

5(d− 1)
. (E.67)

28



By Lemma E.3, we have the solution

C =
b

W0(exp{a+ ln b})
, (E.68)

where W0(·) is the upper branch of the Lambert W function. Since the domain of the Lambert W
function is x > −1/e and the fact exp{a+ ln b} > 0, the solution exists.

When C satisfies inequality (E.65), we arrive a lower bound on the exponential storage capacity M :

M ≥ √pC
d−1
4 . (E.69)

Notably, the above takes similar form as [Ramsauer et al., 2021, Theorem 3]. To see the blessings
of sparsity, we consider the following asymptotic analysis and compare with results from the dense
modern Hopfield model. To compare with results from dense modern Hopfield model, we denote the
dense counterparts of a, b with ·̃ notation, i.e.

ã :=
2

d− 1

[
1 + ln

(
2βm2p

)]
, b̃ = b. (E.70)

By [Corless et al., 1996], for sufficient large z, W0(z) is asymptotic to

W0(z) ≃ ln z − ln ln z +O(1). (E.71)

Therefore, for sufficient large β, we have

W0 (exp{a+ ln b}) ≃ a+ ln b− ln (a+ ln b) +O(1), (E.72)

which is dominated by a.

For a, we have

ã ≤ a, (E.73)

and hence

W0

(
exp
{
ã+ ln b̃

})
≤W0 (exp{a+ ln b}) . (E.74)

Therefore, combining above with (E.68), we have

C̃ =
b

W0

(
exp
{
ã+ ln b̃

}) ≤ b

W0 (exp{a+ ln b})
= C, (E.75)

which states that the lower bound of the sparse capacity is larger than that of [Ramsauer et al., 2021]

M =
√
pC

d−1
4 ≥ √pC̃

d−1
4 = MDense. (E.76)

F Auxiliary Theoretical Background

Remark F.1 (Remark on Definition 2.1). To see the equivalence of the two optimization problems,
we observe

ArgMax
p∈∆d

[⟨p, z⟩ −Ψ(p)] = ArgMax
p∈∆d

[
⟨p, z⟩ − 1

2
∥p∥2

]
= ArgMin

p∈∆d

[
−1

2

(
∥p∥2 + ∥z∥2 − 2 ⟨p, z⟩

)]
(F.1)

= ArgMin
p∈∆d

[
1

2
∥p− z∥2

]
,

where the last line is obtained by inserting ∥z∥2 as a constant in (F.1).
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G Additional Experiments

In order to highlight the benefits of the sparse Hopfield model, particularly under conditions of high
data sparsity, we broaden our experimental studies with more models. These models include the
SparseHopfield, Hopfield, the attention mechanism [Vaswani et al., 2017], and a attention-
based MIL baseline, the gated-attention mechanism [Ilse et al., 2018].

G.1 Visualization of Experimental Validation of Theoretical Results

We provide visual demonstrations of Section 4.1 in Figure 4.

G.2 Bit Pattern MIL

To supplement Section 4.2.1, we conduct further numerical investigations on the same MIL tasks (bag
sparsity and bag size) with SparseHopfield, Hopfield. In these experiments, we contrast the
performance of SparseHopfield and Hopfield (and also SparseHopfieldPooling and
HopfieldPooling) with the attention mechanism [Vaswani et al., 2017] and the gated-attention
mechanism [Ilse et al., 2018]. For the bag size, we fix the number of positive pattern in a bag to
be 1, and vary bag size from 20 to 300. For the bag sparsity, we fix the bag size as 200, and inject
from 2 to 100 positive patterns in a positive bag, results in 1 to 50 percent of positive patterns in each
positive bag. The results are reported in Table 4. For numerical experiments on synthetic datasets, we
do not use hyperparameter search due to the simplicity of both model structure and data.

Table 4: Top (Bag Size): Accuracy comparison on bit pattern dataset for sparse and dense Hopfield
model. We report the average accuracy over 10 runs. The results suggest that the sparse Hopfield
model demonstrates a better performance when facing a bag size increase. Bottom (Bag Sparsity):
Performance comparison on bit pattern dataset for sparse and dense Hopfield model with varying bag
sparsity. We report the average accuracy over 10 runs. The results suggest that the sparse Hopfield
model demonstrates a better performance across all sparsity.

Bag Size 20 50 100 150 200 300

Sparse Hopfield 98.82 ± 0.34 99.45 ± 0.19 97.13 ± 0.11 95.98 ± 0.12 94.17 ± 0.01 90.15 ± 0.30
Dense Hopfield 99.65 ± 0.70 99.51 ± 0.87 53.90 ± 0.00 49.51 ± 0.02 51.92 ± 0.12 53.83 ± 0.12

Sparse Hopfield Pooling 99.71 ± 0.06 100.0 ± 0.00 100.0 ± 0.00 99.76 ± 0.00 99.76 ± 0.00 99.76 ± 0.00
Dense Hopfield Pooling 99.68 ± 0.15 100.0 ± 0.00 100.0 ± 0.00 76.44 ± 0.23 49.13 ± 0.01 52.88 ± 0.01

Attention 87.01 ± 0.00 74.51 ± 0.01 45.19 ± 0.31 53.75 ± 0.76 46.63 ± 0.02 53.36 ± 0.03
Gated 87.88 ± 0.00 63.44 ± 0.04 75.38 ± 0.56 73.45 ± 0.70 71.05 ± 0.35 49.61 ± 1.78

Bag Sparsity 1% 2% 3% 5% 10% 20% 40% 50%

Sparse Hopfield 95.62 ± 0.01 95.98 ± 0.30 99.68 ± 0.01 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
Dense Hopfield 51.44 ± 0.01 57.21 ± 0.01 75.48 ± 0.01 99.03 ± 0.11 99.51 ± 0.02 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

Sparse Hopfield Pooling 99.76 ± 0.00 99.68 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
Dense Hopfield Pooling 49.20 ± 0.00 85.58 ± 0.10 100.0 ± 0.00 100.0 ± 0.00 99.68 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

Attention 74.51 ± 0.01 78.81 ± 0.04 96.63 ± 0.02 100.0 ± 0.00 99.51 ± 0.01 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
Gated 78.94 ± 0.41 95.28 ± 0.35 98.55 ± 0.00 99.03 ± 0.01 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

G.3 Convergence Analysis

To supplement Section 4.2.1, we also analyze the convergence behavior of the SparseHopfield
and Hopfield numerically. In Figure 5, we plot the loss and accuracy curve for both models on the
bit pattern dataset for the bag size tasks mentioned in Section 4.2.1. We include various bag sizes in
the plot to examine how the loss curve responds to an increase in bag size (i.e., the number of memory
patterns, M ). The results show that, SparseHopfield surpasses the Hopfield in nearly all bag
sizes. Moreover, for the same bag size, SparseHopfield always reaches the minimum validation
loss faster than Hopfield. This provides empirical support for our theoretical prediction outlined in
Theorem 2.2. In conjunction with the findings illustrated in Figure 2, Figure 5 reinforces the benefits
of utilizing the sparse Hopfield model. In particular, the evidence verifies the claim in Theorem 2.2,
demonstrating that the convergence speed of the sparse and dense Hopfield models shows different
dependencies on the bag size M in this experiment.
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Figure 4: Visualizing noise-robustness of sparse and dense Hopfield models (Figure 1 of Sec-
tion 4.1). We perform memory retrieval using both Dense and Sparse Hopfield models, with queries
subjected to varying levels of noise. We randomly select an image from the CIFAR10 dataset to serve
as the memory pattern. This selected image is then contaminated with different levels of random
noise (µ = 0 and 0.05 ≤ σ ≤ 1.5) to generate query patterns. The results demonstrate that the Sparse
Hopfield model is more effective in retrieving the original image, showcasing its superior robustness
against noise.

G.4 Sparsity Generalization

To supplement Section 4.2.1, we explore another scenario where the bag sparsity shifts between
training and test data. We train dense and sparse Hopfield models on a certain bag sparsity, and
evaluate on another. The main goal of this setting is to investigate the generalization performance
of dense and sparse Hopfield models when the information sparsity shift of training and test data
distribution. We fix the bag size to 200, and then implant different number of positive signals to the
training and test dataset range from 0.5 to 50 percent. We report the results of HopfieldPooling
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Figure 5: Top: The training loss and accuracy curve of SparseHopfield and Hopfield with
different bag sizes. Bottom: The validation loss and accuracy curve of SparseHopfield and
Hopfield with different bag sizes. The plotted are the mean of 10 runs. The results indicate that the
sparse Hopfield model converges faster than the dense model and also yields superior validation/test
accuracy.

and SparseHopfieldPooling in Table 5.12 The result shows that for HopfieldPooling,
while train on dense bags help its performance of evaluating on sparse bags, lacking ability of learning
from sparse bags still affects its performance. Meanwhile SparseHopfieldPooling is more
robust against sparsity shift, especially for the case where it was trained on dense bags and evaluate on
sparse bags. However, both sparse and dense Hopfield models inevitably suffer from a performance
drop when having a sparsity gap when train bags are much more sparse than test bags.

Table 5: Accuracy comparison on bit pattern dataset for sparse and dense Hopfield Model
when varying the train/test sparsity gap. We report the average accuracy over 10 runs. The result
shows that for HopfieldPooling, while train on dense bags help its performance of evaluating
on sparse bags, lacking ability of learning from sparse bags still affects its performance. Meanwhile
SparseHopfieldPooling is more robust against sparsity shift, especially for the case where it
was trained on dense bags and evaluate on sparse bags. However, both sparse and dense Hopfield
models inevitably suffer from a performance drop when having a sparsity gap when train bags are
much more sparse than test bags.

# of Train Positive Signal per Bag (Dense/Sparse)
# of Test 1 2 10 20 40 80 100

1 46.63 / 99.76 48.55 / 94.31 53.84 / 74.52 59.61 / 81.73 66.82 / 81.25 72.07 / 81.73 72.59 / 81.25
2 47.59 / 52.40 51.44 / 98.18 58.17 / 95.19 62.01 / 95.67 69.23 / 95.67 72.59 / 95.67 72.11 / 95.67
10 99.51 / 100.0 99.51 / 100.0 99.51 / 100.0 99.51 / 100.0 99.51 / 100.0 99.51 / 100.0 99.51 / 100.0
20 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0
40 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0
80 100.0 / 97.03 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0

100 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0

G.5 Real-World Experiments

To examine the practical applicability of the proposed model, we implement it in two additional
experiments that utilize transformer-based models for distinct tasks. These tasks include multivariate
time series prediction [Zhang and Yan, 2022], and neural machine translation [Vaswani et al., 2017].
In these experiments, we substitute the existing attention mechanism with both the Hopfield and
SparseHopfield layers.

12For the ease of presentation, we exclude the standard deviations in Table 5 as they are all close to zero and
less than 0.31%
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G.5.1 Multivariate Time Series Prediction

For the multivariate time series prediction task, we implement two variants of the SOTA Cross-
former model [Zhang and Yan, 2022], Crossformer-DH and Crossformer-SH, with Hopfield
and SparseHopfield layers respectively. These models employ an architecture akin to the Swin-
Transformer [Liu et al., 2021], utilizing shifting windows to extract information at multiple res-
olutions. The experiment results are showed in Table 6. Our results indicate that our proposed
SparseHopfield not only consistently enhances transformer-based deep learning models but also
achieves SOTA performance. In 60+% of 58 settings, the Sparse Hopfield model, Crossformer-SH,
ranks first or second, with 28 top and 7 runner-up performances.

Datasets. We conduct the experiments on four multivariate time series real-world datasets:
ETTh1 (Electricity Transformer Temperature-hourly), ETTm1 (Electricity Transformer Temperature-
minutely), WTH (Weather), ILI (Influenza-Like Illness), ECL (Electricity Consuming Load), Traffic.

Baselines. We benchmark our method against the results of [Zhang and Yan, 2022] and other
baselines (Tranformer [Vaswani et al., 2017], Informer [Zhou et al., 2021] and Autoformer [Chen
et al., 2021]) therein.

Setup. We adopt the same setting as in [Zhang and Yan, 2022]: multivariate time series prediction
task on various datasets. Following [Zhang and Yan, 2022], for each dataset, we evaluate our models
with several different prediction horizons. As for hyperparameters, we simply adopt the optimized
hyperparameter configuration used in [Zhang and Yan, 2022] obtained via grid search for both [Zhang
and Yan, 2022] and all baselines. We report the average accuracy of 5 runs, evaluated using Mean
Square Error (MSE) and Mean Absolute Error (MAE) metrics.

G.5.2 Neural Machine Translation

We showcase the application of the proposed sparse Hopfield model in the context of the classic
neural machine translation task, as described in [Vaswani et al., 2017]. By substituting the attention
mechanism in the transformer with a 1-step Hopfield and SparseHopfield, we compare the
performance (BLEU score) of the transformer and Hopfield models on various language pairs. The
results of this comparison can be found in Appendix G.4.

Datasets. We use the WMT17 [Bojar et al., 2017] machine translation task dataset. Which consists
of sentence pairs of two different languages, where we consider the translation between German and
English (EN-DE), Russian and English (RU-EN). The EN-DE setting has 5.91M pairs of training
data, 3000 pairs of validation and 3000 pairs of test data. The EN-RU setting has 25.78M pairs of
training data, 3000 pairs of validation and 3000 pairs of test data.

Baselines. For the baselines, we follow the architecture of base transformer in [Vaswani et al.,
2017] which has 6 layers of encoder and decoder. The hidden dimension is 512 and the feed forward
dimension is 2048. More details of configuration can be found in Table 8. Note that when switching
the attention in base transformer to either Hopfield or SparseHopfield, no extra parameter was
added in our experiment. Thus, the comparison in our setting is fair.

Setup. We follow the setup in [Vaswani et al., 2017] on the WMT-17 dataset. In this experiment, we
consider the task of English to German (EN-DE), German to English (DE-EN), Russian to English
(RU-EN) and English to Russian (EN-RU). We report the BLEU score on the test set. For WMT17, we
follow the base-transformer in [Vaswani et al., 2017], and train the model with 50000 steps, and report
the performance of the last checkpoint13. Our results show that our proposed SparseHopfield
not only consistently improves upon transformer-based deep learning models but also surpasses the
performance of the dense Hopfield model [Ramsauer et al., 2021].

13We follow the implementation in https://github.com/OpenNMT/OpenNMT-py for the NMT
experiment.
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Table 6: Accuracy comparison for multivariate time series predictions on various datasets, using
both the sparse and dense Hopfield models. Based on SOTA prediction model Crossformer [Zhang
and Yan, 2022], we implement two Crossformer variants, Crossformer-DH and Crossformer-SH,
with Hopfield and SparseHopfield layers respectively. We report the average accuracy of 5 runs,
evaluated using Mean Square Error (MSE) and Mean Absolute Error (MAE) metrics. We benchmark
our method against the results of [Zhang and Yan, 2022] and other baselines (Tranformer [Vaswani
et al., 2017], Informer [Zhou et al., 2021] and Autoformer [Chen et al., 2021]) therein. We evaluate
each dataset with different prediction horizons (showed in the second column). We have the best
results bolded and the second best results underlined. In 60+% of 58 settings, the Sparse Hopfield
model, Crossformer-SH, ranks first or second, with 28 top and 7 runner-up performances. Our results
indicate that our proposed SparseHopfield not only consistently enhances transformer-based deep
learning models but also achieves SOTA or comparable performance.

Models Transformer Informer Autoformer Crossformer Crossformer-DH Crossformer-SH
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.620 0.577 0.577 0.549 0.439 0.440 0.305 0.367 0.299 0.365 0.295 0.357
48 0.692 0.671 0.685 0.625 0.429 0.442 0.352 0.394 0.351 0.399 0.346 0.392

168 0.947 0.797 0.931 0.752 0.493 0.479 0.410 0.441 0.412 0.443 0.425 0.455
336 1.094 0.813 1.128 0.873 0.509 0.492 0.440 0.461 0.455 0.468 0.459 0.477
720 1.241 0.917 1.215 0.896 0.539 0.537 0.519 0.524 0.523 0.529 0.518 0.522

E
T

T
m

1

24 0.306 0.371 0.323 0.369 0.410 0.428 0.310 0.371 0.199 0.285 0.198 0.287
48 0.465 0.470 0.494 0.503 0.483 0.464 0.300 0.352 0.290 0.356 0.276 0.340
96 0.681 0.612 0.678 0.614 0.502 0.476 0.320 0.373 0.344 0.398 0.305 0.371

288 1.162 0.879 1.056 0.786 0.604 0.522 0.404 0.427 0.404 0.429 0.373 0.406
672 1.231 1.103 1.192 0.926 0.607 0.530 0.569 0.528 0.568 0.523 0.467 0.474

W
T

H

24 0.349 0.397 0.335 0.381 0.363 0.396 0.294 0.343 0.294 0.343 0.294 0.344
48 0.386 0.433 0.395 0.459 0.456 0.462 0.370 0.411 0.369 0.408 0.375 0.410

168 0.613 0.582 0.608 0.567 0.574 0.548 0.473 0.494 0.472 0.493 0.480 0.499
336 0.707 0.634 0.702 0.620 0.600 0.571 0.495 0.515 0.498 0.519 0.504 0.523
720 0.834 0.741 0.831 0.731 0.587 0.570 0.526 0.542 0.528 0.546 0.536 0.544

IL
I

24 3.954 1.323 4.588 1.462 3.101 1.238 3.041 1.186 3.428 1.279 3.124 1.143
36 4.167 1.360 4.845 1.496 3.397 1.270 3.406 1.232 3.490 1.306 3.404 1.192
48 4.746 1.463 4.865 1.516 2.947 1.203 3.459 1.221 3.600 1.277 3.509 1.205
60 5.219 1.553 5.212 1.576 3.019 1.202 3.640 1.305 3.666 1.271 3.709 1.205

E
C

L

48 0.334 0.399 0.344 0.393 0.241 0.351 0.156 0.255 0.159 0.264 0.154 0.254
168 0.353 0.420 0.368 0.424 0.299 0.387 0.231 0.309 0.290 0.316 0.225 0.303
336 0.381 0.439 0.381 0.431 0.375 0.428 0.323 0.369 0.318 0.363 0.332 0.375
720 0.391 0.438 0.406 0.443 0.377 0.434 0.404 0.423 0.397 0.421 0.414 0.429
960 0.492 0.550 0.460 0.548 0.366 0.426 0.433 0.438 0.434 0.438 0.440 0.443

Tr
af

fic

24 0.597 0.332 0.608 0.334 0.550 0.363 0.491 0.274 0.488 0.271 0.496 0.280
48 0.658 0.369 0.644 0.359 0.595 0.376 0.519 0.295 0.513 0.291 0.516 0.290

168 0.664 0.363 0.660 0.391 0.649 0.407 0.513 0.289 0.516 0.289 0.512 0.288
336 0.654 0.358 0.747 0.405 0.624 0.388 0.530 0.300 0.541 0.304 0.529 0.297
720 0.685 0.370 0.792 0.430 0.674 0.417 0.573 0.313 0.557 0.307 0.555 0.304

H Experimental Details

All experiments are conducted on the platform with NVIDIA GEFORCE RTX 2080 Ti and INTEL
XEON SILVER 4214 @ 2.20GHz.

H.1 Multiple Instance Learning (MIL)

H.1.1 Synthetic Dataset

Architectural Details. For the Hopfield model, the architecture is composed of 1 layer of either
Hopfield or HopfieldPooling and 1 layer of fully connected output projection. For the
attention model, the architecture is composed of 1 layer of attention layer and 1 layer of fully
connected output projection. The dataset contains 50% of positive bags and 50% of negative bags.

Training Details. We use an AdamW [Loshchilov and Hutter, 2017] optimizer. For each bag
size, we ran the experiment 10 times with different random seed. For all of our synthetic dataset
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Table 7: Results for the machine translation on the WMT17 dataset with language pairs of
DE-EN, EN-DE, RU-EN, EN-RU. We showcase the application of the proposed sparse Hopfield
model in the context of the classic neural machine translation task on WMT17 dataset, as outlined
in [Vaswani et al., 2017]. By substituting the attention mechanism in the transformer with a 1-step
Hopfield and SparseHopfield, we compare the performance (BLEU score) of the transformer
and Hopfield models. To ensure a fair comparison, all models (Transformer, Dense Hopfield, Sparse
Hopfield) are of the same size. Our results show that our proposed SparseHopfield consistently
improves upon transformer-based deep learning models

Dataset DE-EN EN-DE RU-EN EN-RU
Transformer 29.8 34.9 28.5 24.8

Dense Hopfield 33.6 37.2 28.5 24.9
Sparse Hopfield 36.1 37.1 28.6 24.8

Table 8: Hyperparameter of the NMT experiment.

parameter values
batch size 4096
initial lr 2.0
vocab size (DE-EN) 36000
vocab size (EN-RU) 34776
num heads 8
hidden dimension 512
word vector dimension 512
feed forward dimension 2048
encoder layer 6
decoder layer 6
label smoothing 0.1
decay method Noam
optimizer Adam
warm up steps (DE-EN) 4000
warm up steps (EN-RU) 8000
train steps (DE-EN) 50000
train steps (EN-RU) 80000
max sequence length 96
beam size 5
tokenizer sentencepiece

experiments, we use the exact same configuration, shown in Table 5. The coefficients of Adam
optimizer, betas, are set to (0.9, 0.999). As the number of training epochs, we use 150, and the
evaluate the model on the testset with the last checkpoint. All the experiments done on the synthetic
datasets follow the same architecture and training details.

Baselines. For our synthetic dataset, we consider two baselines. [Ilse et al., 2018] (Gated), where
they proposed a gated-attention mechanism by inserting one extra linear layer on the attention weights
before the softmax function. And they replaced the activation function of query to Tanh function.
[Vaswani et al., 2017] (Attn), where they proposed a multi-head attention mechanism has been widely
used in modern deep learning.

Table 9: Statistics of Bit Pattern Synthetic Dataset.

Unique Patterns Pattern Length (bits) Training Test

4 4 800 200
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Table 10: Hyperparameter of the Bit Pattern Dataset.

parameter values
batch size 128
learning rates 10−3

scaling factors 0.25
num heads 8
head dimension 8
max update steps 3
dropout 0.5

H.1.2 MIL Benchmark Datasets

The experiment is conducted on 4 popular MIL datasets. Elephant, Fox and Tiger are datasets for
image annotation which are composed of preprocessed and segmented colored images. Each image
is characterized by color, texture and shape descriptors. These datasets contain 100 positive images
that contain the purposed animals and 100 negative images that are drawn from a pool of images of
other animals. Furthermore, we tested our model on the UCSB breast cancer classification task. An
instance in UCSB dataset represents a patch of a histopathological image of cancerous or normal
tissue. The detailed statistics of datasets are summarized in Table 11.

Table 11: Statistics of MIL benchmark datasets

Name Instances Features Bags +bags −bags

Elephant 1391 230 200 100 100
Fox 1302 230 200 100 100
Tiger 1220 230 200 100 100
UCSB Breast Cancer 2002 708 58 26 32

In detail, we used a similar architecture described in [Ramsauer et al., 2021] to perform the MIL
tasks. Firstly, the instance embeddings are sent to fully connected linear embedding layers with ReLU
activation. After that, we used a SparseHopfieldwhich has Sparse Retrieval Dynamics to process
the output of fully connected linear layers. Afterward, we flatten the output of SparseHopfield
and use a linear network with ReLU activation can perform classification.

To avoid application bias, we follow the experiment setting in [Küçükaşcı and Baydoğan, 2018,
Ramsauer et al., 2021] and utilize a stratified ten-fold cross-validation to demonstrate the success of
proposed SparseHopfield and Hopfield. For each fold in cross-validation, we use a stratified
sampling process to split folds for training into a training set and validation set with a 0.1 split rate. We
train the models’ parameters and tune hyperparameters via grid searching. Once the hyperparameters
are selected and the parameters of models are tuned on the first train folds of the first seed, we apply
the selected configuration of the model models on other test folds or folds of other random seeds. All
reported ROC-AUC scores are the average results of 5 runs with different random seeds.

The grid search space is listed in Table 12. The embedding layers are the pre-HopfieldPooling linear
network and the layer width of them is the number of hidden units. A dropout operation, also known
as bag dropout, is applied to the attention matrix since it’s easy to overfit on these benchmark datasets.
All models are trained with the Adam optimizer for 50 epochs. To combat overfitting, we also use an
early-stopper that chooses the best checkpoint on the validation set.

One thing that should be noticed is that [Ramsauer et al., 2021] uses the pooling lay-
ers HopfieldPooling for MIL tasks instead of associative layers SparseHopfield or
Hopfield. We also conduct an ablation experiment in that the model uses the first two mod-
ules for MIL tasks following the model structure as well as its training and testing process presented
above. As shown in Table 13, the pooling layers can reach comparative results with associative
layers on Fox and Tiger datasets but have performance degradation on Elephant and UCSB datasets.
Besides, the SparseHopfieldPooling can also perform better than HopfieldPooling on
Tiger and Elephant datasets.

36



Table 12: Hyperparameter grid search space on the respective validation sets of the Elephant, Fox,
Tiger and UCSB breast cancer datasets.

parameter values
batch size {4, 8, 16}
learning rates {10−3, 10−5}
learning rate decay {0.98, 0.96, 0.94}
embedding layers {1, 2}
layer width {32, 64, 128}
number of heads {8, 12}
head dimensions {16, 32}
scaling factors {0.1, 1, 10}
bag dropout {0.0, 0.75}

Table 13: Results for MIL benchmark datsets in terms of AUC score. The models use pooling layers
HopfieldPooling and SparseHopfieldPooling instead.

Method Tiger Fox Elephant UCSB

w/ HopfieldPooling 0.871± 0.014 0.637± 0.035 0.876± 0.015 0.828± 0.068
w/ SparseHopfieldPooling 0.884± 0.007 0.610± 0.033 0.914± 0.016 0.796± 0.107
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