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We introduce the Bi-Directional Sparse Hopfield Network (BiSHop), a novel end-to-end frame-
work for deep tabular learning. BiSHop handles the two major challenges of deep tabular learning:
non-rotationally invariant data structure and feature sparsity in tabular data. Our key motivation
comes from the recent established connection between associative memory and attention mech-
anisms. Consequently, BiSHop uses a dual-component approach, sequentially processing data
both column-wise and row-wise through two interconnected directional learning modules. Com-
putationally, these modules house layers of generalized sparse modern Hopfield layers, a sparse
extension of the modern Hopfield model with adaptable sparsity. Methodologically, BiSHop fa-
cilitates multi-scale representation learning, capturing both intra-feature and inter-feature interac-
tions, with adaptive sparsity at each scale. Empirically, through experiments on diverse real-world
datasets, we demonstrate that BiSHop surpasses current SOTA methods with significantly less
HPO runs, marking it a robust solution for deep tabular learning.
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1 Introduction

The field of developing deep learning architectures for tabular data is recently experiencing rapid
advancements [Arik and Pfister, 2021, Gorishniy et al., 2021, Huang et al., 2020, Somepalli et al.,
2021]. The primary driving force behind this trend is the limitations of the current dominant
methods for tabular data: tree-based methods. Specifically, while tree-based methods excel in
tabular learning, tree-based methods lack the capability to integrate with deep learning architec-
tures. Therefore, the pursuit of deep tabular learning is not just a matter of enhancing performance
but is also crucial to bridge the existing gap. However, a recent tabular benchmark study [Grinsz-
tajn et al., 2022] reveals that tree-based methods still surpass deep learning models, underscoring
two main challenges for deep tabular learning, as highlighted by Grinsztajn et al. [2022, Section
5.3 & 5.4]:

(C1) Non-Rotationally Invariant Data Structure: The non-rotationally invariant structure of
tabular data weakens the effectiveness of deep learning models that have rotational invariant
learning procedures.

(C2) Feature Sparsity: Tabular datasets are generally sparser than typical datasets used in deep
learning, which makes it challenging for deep learning models to learn from uninformative
features.

To combat these, we introduce the Bi-Directional Sparse Hopfield Network, a Hopfield-based
deep learning framework tailored for tabular data. To address the non-rotationally invariant
data structure of tabular data (C1), our model adopts a dual-component design, named the Bi-
directional Sparse Hopfield Module (BiSHopModule). Specifically, our model employs bi-directional
learning through two separate Hopfield models, focusing on both column-wise and row-wise pat-
terns separately, thereby naturally assimilating the tabular data’s inherent structure as an inductive
bias.

For tackling the features sparsity in tabular data (C2), we utilize the generalized sparse modern
Hopfield model [Wu et al., 2024b]. The generalized sparse modern Hopfield model is an extension
to the sparse modern Hopfiled model [Hu et al., 2023] and modern Hopfiled model [Ramsauer
et al., 2020] with the learnable sparsity. It offers robust representation learning and seamlessly
integrates with existing deep learning architectures, ensuring focus on crucial information. Fur-
thermore, inspired by brain’s multi-level organization of associative memory, we stack multiple
layers of the generalized sparse modern Hopfield model within BiSHopModule. As a result, each
layer learns representations at unique scales, adjusting its sparsity accordingly, adding (C2) as
another inductive bias to the model.

At its core, BiSHop facilitates multi-scale representation learning, capturing both intra-feature
and cross-feature dynamics while adjusting sparsity for each scale. In all directions, whether
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Figure 1: High-Level Visualization of BiSHop’s Pipeline.

column-wise or row-wise, the model identifies representations across various scales. These refined
representations, spanning all scales, are subsequently concatenated for downstream inference,
ensuring a holistic Bi-Directional cellular learning tailored for tabular data.

Contributions. Our contributions are twofold:

• Methodologically, we propose BiSHop, a novel deep-learning model for tabular data. BiSHop
integrates with two inductive biases (C1, C2) in tabular learning using BiSHopModule and
hierarchical learning structure. The BiSHopModule utilizes the generalized sparse modern
Hopfiled model [Wu et al., 2024b] for tabular feature learning, enabling multi-scale sparsity
learning with superior noise-robustness. We also present a hierarchical two-joint design to
handle the intrinsic structure of tabular data with learnable sparsity and multi-scale cellular
learning. Additionally, we adopt tabular embedding [Gorishniy et al., 2021, 2022, Huang
et al., 2020] to enhance representation learning for both numerical and categorical features.

• Experimentally, we conduct thorough experiments on diverse real-world datasets as well
as a well-known tabular benchmark [Grinsztajn et al., 2022]. This encompasses a total of
18 classification tasks and 11 regression tasks. We compare BiSHop with both SOTA tree-
based and deep learning methods. Our results show that BiSHop outperforms baselines
across most of tested datasets, including both regression and classification tasks.

Notations. We denote vectors by lowercase bold letters, and matrices by upper case bold letters
For vectors a, b, we define their inner product as ⟨a,b⟩ = aTb. We use the shorthand [I] to
represent the index set {1, · · · , I} with I being a positive integer. For matrices, we denote the
spectral norm as ∥·∥, which aligns with the l2-norm for vectors. We denote the memory patterns
by ξ ∈ Rd and the query pattern by x ∈ Rd, and Ξ := [ξ1, · · · , ξM ] ∈ Rd×M as shorthand for
stored memory patterns {ξµ}µ∈[M ].
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1.1 Related Works

Machine Learning for Tabular Data. Tabular data is a common data types across various do-
mains such as time series prediction, fraud detection, physics, and recommendation systems.
The state-of-the-art machine learning models on tabular data are tree-based model such as the
family of gradient boosting decision trees (GBDT) models [Chen et al., 2015, Ke et al., 2017,
Prokhorenkova et al., 2018]. Recent years, as deep learning model architectures thrive in the nat-
ural language processing (NLP) domain and the computer vision (CV) domain, there are many at-
tempts to adapt and apply those successful deep learning architectures such as Multi-layer Percep-
tron (MLP) Kadra et al. [2021], Convolutional neural network (CNN) [Buturović and Miljković,
2020], and Transformer [Huang et al., 2020, Padhi et al., 2021, Somepalli et al., 2021] from these
two domains to the domains using tabular data. Besides, another line of works using deep learn-
ing is to create differentiable tree-based models intending to bring extra power on top of current
GBDT models [Abutbul et al., 2020, Arik and Pfister, 2021, Popov et al., 2019]. However, unlike
their dominance in NLP and CV, all these deep learning models have been struggling to surpass
GBDTs’ dominant performance on tabular data [Borisov et al., 2021, Grinsztajn et al., 2022]. A
recent work, TabR [Gorishniy et al., 2023]), show some marginal advantage over GBDT on por-
tion of the datasets. For small datasets, TabPFN [Hollmann et al., 2023] by utilizing Prior-Data
Fitted Network performs better then tree-based method. However, the memory and runtime usage
scale quadratically with the training inputs. T2G-FORMER [Yan et al., 2023] fails to surpass
XGBoost, while performing better than other deep learning methods by feature relations learn-
ing. TANGOS [Jeffares et al., 2023] reduces the gap between deep-learning models to tree-based
models by applying specific regularisation techniques during NN training. To this day, there is
still no deep learning model for tabular data that can uniformly outperform tree-based model.

Modern Hopfield Models and Attention Mechanisms. The classical Hopfield models [Hop-
field, 1982, 1984, Krotov and Hopfield, 2016] are quintessential representations of the human
brain’s associative memory. Their primary function is the storage and retrieval of specific mem-
ory patterns. Recently, a resurgence of interest in Hopfield models within the machine learning
field is attributed to developments in understanding memory storage capacities [Demircigil et al.,
2017, Krotov and Hopfield, 2016, Wu et al., 2024a], innovative architecture [Fürst et al., 2022,
Hoover et al., 2023, Ramsauer et al., 2020, Seidl et al., 2022], and their biologically-grounded
rationale [Kozachkov et al., 2022, Krotov and Hopfield, 2020]. Notably, the modern Hopfield
models [Hu et al., 2023, 2024b, Ramsauer et al., 2020, Wu et al., 2024b]1, demonstrate not only
a strong connection to the transformer attention mechanisms in deep learning, but also superior
performance, and a theoretically guaranteed exponential memory capacity. In this regard, see-
ing the modern Hopfield models as an advanced extension of attention mechanisms opens up
prospects for crafting Hopfield-centric architectural designs. Therefore, their applicability spans
diverse areas like immunology [Widrich et al., 2020], time series forecasting [Auer et al., 2023,

1For an in-depth tutorial, see [Brandstetter, 2021].
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Wu et al., 2024b], reinforcement learning [Paischer et al., 2022], and large language models [Fürst
et al., 2022, Hu et al., 2024a]. In this context, this work emphasizes refining this line of research
towards sparser models. Specifically, we improve our method’s ability to handle sparsity by in-
corporating a Generalized Sparse Modern Hopfield Network (GSH) from Wu et al. [2024b]. We
posit that this effort is crucial in guiding future research toward Hopfield-driven design paradigms
and bio-inspired computing systems.

2 Background: Dense and Generalized Sparse Modern Hop-
field Model

This section provides a concise overview of the modern Hopfield model [Ramsauer et al., 2020]
and the generalized sparse modern Hopfield model [Wu et al., 2024b]. Wu et al. [2024b] presents
an extension to [Hu et al., 2023, Ramsauer et al., 2020], utilizing the Tsallis α-entropy [Tsallis,
1988]

2.1 (Dense) Modern Hopfield Models

Let x ∈ Rd be the query pattern and Ξ = [ξ1, · · · , ξM ] ∈ Rd×M the memory patterns. The aim of
Hopfield models [Demircigil et al., 2017, Hopfield, 1982, 1984, Krotov and Hopfield, 2020, 2016]
is to store these memory patterns Ξ and retrieve a specific memory ξµ when given a query x. These
models comprise two primary components: an energy function E(x) that encodes memories into
its local minima, and a retrieval dynamics T (x) that fetches a memory by iteratively minimizing
E(x) starting with a query.

Ramsauer et al. [2020] propose the (dense/vanilla) modern Hopfield model with a specific set
of E and T , and integrate it into deep learning architectures via its connection with attention
mechanism, offering enhanced performance, and theoretically guaranteed exponential memory
capacity. Specifically, they introduce a Hopfield energy function:

E(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩ , (2.1)

and the corresponding memory retrieval dynamics

TDense(x) = Ξ · Softmax(βΞTx) = xnew. (2.2)

The function lse (β, z) := log
(∑M

µ=1 exp{βzµ}
)
/β is the log-sum-exponential for any given

vector z ∈ RM and β > 0. Surprisingly, their findings reveal:
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• The TDense dynamics converge to memories provably and retrieve patterns accurately in just
one step.

• The modern Hopfield model from (2.1) possesses an exponential memory capacity in pattern
size d.

• Notably, the one-step approximation of TDense mirrors the attention mechanism in transform-
ers, leading to a novel architecture design: the Hopfield layers.

2.2 Generalized Sparse Modern Hopfield Model

This section follows [Wu et al., 2024b, Section 3]. For self-containedness, we also summarize the
useful theoretical results of [Wu et al., 2024b] in Appendix B.

Associative Memory Model. Let z,p ∈ RM , and ∆M := {p ∈ RM
+ |

∑M
µ pµ = 1} be the

(M − 1)-dimensional unit simplex. Wu et al. [2024b] introduce the generalized sparse Hopfield
energy

E(x) = −Ψ⋆
(
βΞTx

)
+

1

2
⟨x,x⟩ , (2.3)

where Ψ⋆(z) :=
∫
dzα-EntMax(z), and α-EntMax(·) is defined as follows.

Definition 2.1 ([Peters et al., 2019]). The variational form of α-EntMax is defined as

α-EntMax(z) := ArgMax
p∈∆M

[pTz−Ψα(p)], (2.4)

where Ψα(·) is the Tsallis entropic regularizer

Ψα(p) :=

{
1

α(α−1)

∑M
µ=1

(
pµ − pαµ

)
, α ̸= 1,∑M

µ=1 pµ ln pµ, α = 1,
for α ≥ 1.

The corresponding memory retrieval dynamics is given as

Lemma 2.1 (Retrieval Dynamics, Lemma 3.2 of [Wu et al., 2024b]). Given t as the iteration
number, the generalized sparse modern Hopfield model exhibits a retrieval dynamic

T (xt) = Ξα-EntMax(βΞTxt) = xt+1, (2.5)

which ensures a monotonic decrease of the energy (2.3).

This model also enjoys nice memory retrieval properties:
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Lemma 2.2 (Convergence of Retrieval Dynamics T , Lemma 3.3 of [Wu et al., 2024b]). Given
the energy function E and retrieval dynamics T defined in (2.3) and (2.4), respectively. For any
sequence {xt}∞t=0 generated by the iteration xt′+1 = T (xt′), all limit points of this sequence are
stationary points of E.

Lemma 2.2 ensures the (asymptotically) exact memory retrieval of this model ((2.3) and (2.5)),
Thus, it serves as a well-defined associative memory model.

In essence, Wu et al. [2024b] present this sparse extension of the modern Hopfield model through a
construction of both E and T by convex conjugating the Tsallis entropic regularizers. This model
not only adheres to the conditions for a well-defined modern Hopfield model, but also equips
greater robustness (Corollary B.1.2) and retrieval speed (Theorem B.1 and Corollary B.1.1) than
the modern Hopfield model [Ramsauer et al., 2020], see Appendix B.2 for details. In Figure 4,
we also provide proof-of-concept experimental validations on tabular datasets for Theorem B.1,
Corollary B.1.1 and Corollary B.1.2.

Generalized Sparse Modern Hopfield (GSH) Layers for Deep Learning. Importantly, the gen-
eralized sparse modern Hopfield model serves as a valuable component in deep learning due to
its connection to the transformer attention mechanism akin to its cousins. Next, we review such
connections and the Generalized Sparse Modern Hopfield (GSH) layers.

Following [Hu et al., 2023, Ramsauer et al., 2020, Wu et al., 2024b], X and Ξ are defined in the
associative space, embedded from the raw query R and memory patterns Y, respectively, using
X⊤ = RWQ := Q and Ξ⊤ = YWK := K with matrices WQ and WK . By transposing T from
(2.5) and applying WV such that V := KWV , we obtain:

Z := QnewWV = α-EntMax(βQK⊤)V, (2.6)

introducing an attention mechanism with the α-EntMax activation function. Substituting R and
Y back in, the Generalized Sparse Modern Hopfield (GSH) layer is formulated as:

GSH(R,Y) = α-EntMax(βRWQW
⊤
KY

⊤)YWKWV . (2.7)

This allows the seamless integration of the generalized sparse modern Hopfield model into deep
learning architectures. Concretely, the GSH layer takes matrices R, Y as inputs, with the weight
matrices WQ, WK , WV . Depending on its configuration, it offers several functionalities:

1. Memory Retrieval: In this learning-free setting, weight matrices WK , WQ, and WV are
set as identity matrices. Here, R represents the query input, and Y denotes the stored
memory patterns for retrieval.

2. GSH: This configuration takes R and Y as inputs. Intending to substitute the attention
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mechanism, the weight matrices WK , WQ, and WV are rendered learnable. Furthermore,
R, Y, and Y serve as the sources for query, key, and value respectively. Achieving a self-
attention-like mechanism requires setting R equal to Y.

3. GSHPooling: With inputs Q and Y, this layer uses Q as a static prototype pattern, while
Y contains patterns over which pooling is desired. Given that the query pattern is replaced
by the static prototype pattern Q, the only learnable weight matrices are WK and WV .

4. GSHLayer: The GSHLayer layer takes the query R as its single input. The layer equips with
learnable weight matrices WK and WV , which function as our stored patterns and their
corresponding projections. This design ensures that our key and value are decoupled from
the input. In practice, we set WQ and Y as identity matrices.

In this work, we utilize GSH and GSHPooling layers2 .

3 Methodology

As in Figure 1, BiSHop use three distinct parts to integrate two pivotal inductive biases in tab-
ular data: non-rotationally invariant data structures (C1) and sparse information in features (C2)
[Grinsztajn et al., 2022, Section 5.3 & 5.4]:

• A joint Tabular Embedding layer is designed to processing categorical and numerical data
separately.

• The Bi-Directional Sparse Hopfield Module (BiSHopModule) leverages the generalized
sparse modern Hopfield model. This module incorporates the non-rotationally invariant bias
through two interconnected GSH blocks for row-wise and column-wise learning.

• Stacked BiSHopModules for hierarchical learning, addressing sparse features. Each layer
in the stack module captures information at different scales, allowing for scale-specific spar-
sity.

We provide a detailed breakdown of each part as follows.

3.1 Tabular Embedding

Tabular embedding consists of three parts: categorical embedding Ecat, numerical embedding
Enum, and patch embedding Epatch. The categorical embedding not only learns the representa-
tions within individual categorical features but also capture the inter-relation among all categorical

2https://github.com/MAGICS-LAB/STanHop
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Figure 2: BiSHop. (a) Tabular Embedding: For a given input feature x = (xcat,xnum) ∈ RN=N cat+Nnum
,

the tabular embedding produces embeddings denoted as Eemb(x) ∈ RN×G. (b) Patch Embedding: Us-
ing the combined numerical and categorical embeddings Eemb(x) ∈ RN×G, the patch embedding gathers
embedding information, subsequently reducing dimensionality from G to P = ⌈G/L⌉ for all N features
using a stride length of L. (c) BiSHopModule: The Bi-Directional Sparse Hopfield Module (BiSHopMod-
ule) leverages the generalized sparse modern Hopfield model. It integrates the tabular structure’s inductive
bias (C1) by deploying interconnected row-wise and column-wise GSH layers. (d) Hierarchical Cellu-
lar Learning Module: Employing a stacked encoder-decoder structure, we facilitate hierarchical cellular
learning where both the encoder and decoder consist of the BiSHopModule across H layers. This arrange-
ment enables BiSHop to derive refined representations from both directions across multiple scales. These
representations are then concatenated for downstream inference, ensuring a holistic bi-directional cellular
learning specially tailored for tabular data.

features. The numerical embedding represents each numerical feature with a one-hot-like repre-
sentation and thus benefits neural network learning numerical features. The patch embedding
captures localized feature information by aggregating across feature dimensions, at the same time
reducing computation overhead. Starting from this section, we denote x ∈ RN any given tab-
ular data point with N features. We suppose each x has N num numerical feature xnum and N cat

categorical feature xcat, where x = (xnum,xcat). The categorical embedding Ecat and numerical
embedding Enum transforms xcat and xnum to a embedding dimension G, seperately. The patch
embedding Epatch then reduces G to the patch embedding dimension P .

Categorical Embedding. For categorical embedding Ecat, we use learnable column embedding
proposed by Huang et al. [2020]. For a tabular data point x = (xnum,xcat), a column embed-
ding only acts on the categorical features xcat, as in Ecat(xcat). It comprises a shared embedding
Eshared(xcat) for all categorical features, and N cat individual embeddings for each categorical fea-
tures {xcat

i }i∈[N cat], where [N cat] = {1, · · · , N cat}. We denote the shared embedding dimension as
Gshared and the individual embedding dimension as Gind, where G = Gshared + Gind. The shared

9



embedding Eshared(xcat) ∈ RN cat×Gshared represents each categorical feature differently. The indi-
vidual embedding Eind = {Eind

1 , · · · ,Eind
N cat} represents each category in one categorical feature

differently. Each individual embedding Eind
i (·) ∈ R1×Gind is a scalar-to-vector map acting on each

categorical feature {xcat
i }i∈[N cat]. To obtain the final categorical embedding, we first concat all

individual embedding row-wise, i.e. Eind(xcat) := Concat([Eind
1 (xcat

1 ), . . . ,Eind
N cat(xcat

Ncat)], axis =

0) ∈ RN cat×Gind . Then, we concatenate the shared embedding with all individual embeddings
column-wise, i.e., Ecat(xcat) := Concat([Eshared(xcat),Eind(xcat)], axis = 1) ∈ RN cat×G. Eind

represents the unique category in each feature and Eshared represents the unique feature. Ecat en-
ables our model to capture both the relationship between each feature and each category, with the
flexibility to train shared and individual components separately.

Numerical Embedding. We employ the numerical embedding method as described in Gorishniy
et al. [2021, 2022]. The numerical embedding Enum only acts on the numerical features xnum,
as in Enum(xnum) ∈ RNnum×G. Given a numerical feature {xnum

i }i∈[Nnum], the embedding process
begins by determining G quantiles. To start, we determine G quantiles for each numerical fea-
ture. Quantiles represent each numerical data distribution by dividing it into equal parts. For a
numerical feature {xnum

j }j∈Nnum , we first sort all its values in the training data, xnum
j , in ascending

order. Then, we split the sorted data into G equal parts, where each part contains an equal fraction
of the total data points. We define the boundaries of these parts as bj,0, · · · , bj,G, where bj,0 is
the smallest value in xnum

j . We express the embedding for a specific value xj as a G-dimensional
vector, Enum

j (xj) = (ej,1, · · · , ej,G) ∈ RG. We compute the value of each ej,g, where 1 ≤ g ≤ G

according to the following function:

ej,g :=


0, if xj < bj,g−1 and g > 1,

1, if xj ≥ bj,gj and g < G,
xj−bj,g−1

bj,g−bj,g−1
, otherwise.

For the final embedding, we have Enum(xnum) ∈ RNnum×G. We denote this numerical embedding
as piece-wise linear embedding. This technique normalizes the scale of numerical features and
captures the quantile information for each data point within the numerical feature. It enhances the
representation of numerical feature in deep learning. Concatenating Enum(xnum) with Ecat(xcat)

row-wise, we obtain: Eemb(x) := Concat (Enum(xnum),Ecat(xcat), axis = 0), where Eemb(x) ∈
RN×G. Namely, we call each point Eemb

n,g (x) as a single cell. The categorical and numerical
embedding is in Figure 2 (a).

Patch Embedding. Motivated by [Nie et al., 2023, Zhang and Yan, 2023], we adopt patch em-
bedding (shown in Figure 2 (b)) to enhance the awareness of both local and non-local patterns,
capturing intricate details often missed at the single-cell level. Specifically, we divide embeddings
into patches that aggregate multiple cells. To simplify the computation process, we transpose the
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numerical and categorical embedding dimensions. For convenience, we denote the previous em-
bedding outcomes as Xemb := (Eemb(x))T ∈ RG×N . The patch embedding Epatch reduces the
embedding dimension G by a stride factor L, leading to a new and smaller patched embedding
dimension P := ⌈G/L⌉, where ⌈·⌉ is the ceil function. Furthermore, we introduce a new em-
bedding dimension Dmodel to represent each patch’s hidden states. The patched embedding as
Epatch(Xemb) ∈ RP×N×Dmodel . For future computation, we flip the patch dimension and feature
dimension, resulting final output of patch embedding Xpatch := (Epatch(Xemb))T ∈ RN×P×Dmodel .
This patch embedding method enhances our model’s ability to interpret and integrate detailed lo-
cal and broader contextual information from the data, crucial for in-depth analysis in deep learning
scenarios. For the Xpatch, we denote it as having N rows (features) and P columns (embeddings).

3.2 Bi-Directional Sparse Hopfield Module

By drawing parallels with the intricate interplay of different parts in the brain [Presigny and Fal-
lani, 2022], we present the core design of the BiSHop framework, the Bi-Directional Sparse Hop-
field Module (BiSHopModule), as visualized in Figure 2 (c). The BiSHopModule incorporates
the generalized sparse modern Hopfield model and integrate the inductive bias of tabular structure
(C1) through a unique structure of stacked row-wise and column-wise GSH blocks. Specifically,
the row-wise GSH focuses on capturing the embedding details for individual features, whereas the
column-wise GSH aggregates information across all features. We denote Xpatch

n,p , n ∈ [N ], p ∈ [P ]

as the element in n-th row (feature) and p-th column (embedding).

Column-Wise Block. The column-wise GSH block (purple block on the LHS of Figure 2 (c))
is responsible for capturing embedding hidden information across the embedding dimension P

for each feature. The process begins by passing the patch embeddings of n-th row of Xpatch,
Xpatch

n,: , n ∈ [N ], to the GSH layer for self-attention, followed by the addition of the original patch
embeddings (similar to the residual connection of the standard transformer). Next, we pass the
output above through one LayerNorm layer, one Multi-Layer Perception (MLP) layer, and another
LayerNorm, and obtain the final output of the column-wise block Xcol:

X̂patch
n,: := LayerNorm

(
Xpatch

n,: + GSH(Xpatch
n,: ,Xpatch

n,: )
)
, (3.1)

Xcol := LayerNorm
(
X̂patch + MLP(X̂patch)

)
, (3.2)

This sequence of operations ensures the effective transformation of the embeddings, facilitating
the extraction of meaningful information from the feature space.

Row-Wise Block. The row-wise GSH block (pink block on the RHS of 2 (c)) serves a vital func-
tion in capturing information across the feature dimension N . For each feature, we apply both
GSHPooling and GSH layers to its embedding dimensions. Specifically, we use C learnable pool-
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ing vectors in each feature dimension to aggregate information across all embedding dimensions,
forming a pooling matrix Q ∈ RC×P×Dmodel . We represent the pooling at p-th embedded dimen-
sion as the p-the columns of Q, Q:,p, where p ∈ [P ]. The process begins by pooling the row-wise
output Xrow

:,p using Q:,p in the GSHPooling step. Next, we combine this pooled output with the
row-wise output again, and add the row-wise output to the result. Following this, we pass the
output of the above approach through a LayerNorm layer, then through an MLP layer, and fi-
nally through another LayerNorm layer. This sequence of operations yields the final output of the
row-wise block:

Q̂:,p := GSHPooling(Q:,p,X
col
:,p), (3.3)

X̂row
:,p := GSH(Xcol

:,p , Q̂:,p), (3.4)

X
row

:= LayerNorm(X̂row +Xcol), (3.5)

Xrow := LayerNorm(X
row

+ MLP(X
row

)), (3.6)

This Q pooling matrix design aggregates information from all patch embedding dimensions, and
by setting C ≪ N , it significantly reduces computational complexity.

Together with the row-wise block, we summarize the entire BiSHopModule as a function

BiSHopModule(·) : RP×N → RP×N , (3.7)

where input is Xpatch and output is Xrow.

3.3 Stacked BiSHopModules for Multi-Scale Learning with Scale-Specific
Sparsity

Motivated by the human brain’s multi-level organization of associative memory [Krotov, 2021,
Presigny and Fallani, 2022], we utilize a hierarchical structure to learn multi-scale information
similar to [Zhang and Yan, 2023, Zhou et al., 2021]. This is illustrated in Figure 2 (d). This struc-
ture consists of two main components: the encoder and the decoder, both of which incorporate
the H layer of BiSHopModules. Specifically, the encoder captures coarser-grained information
across different scales, while the decoder makes forecasts based on the information encoded by
the encoder.

Encoder. The encoder (pink block on LHS of Figure 2 (d)), encodes data at multiple levels of
granularity. To accomplish this multi-level encoding, we use H stacked BiSHopModules. These
modules help in processing and understanding the data from different perspectives. We also em-
ploy a learnable merging matrix [Liu et al., 2021] to aggregate r adjacent patches of Xpatch. We
denote the merging matrix at layer h ∈ [H] as Emerge

h ∈ Rr×1, which refines its input embeddings
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to be coarser at each level. We refer to h-th level encoder output as Xenc,h and input as Xenc,h−1.
Concretely, at the level h, we use Emerge

h to aggregate r adjacent embedding vectors from Xenc,h−1,
producing a coarser embedding X̂enc,h−1. We then pass X̂enc,h−1 through the BiSHopModules, re-
sulting in the output encoded embedding, denoted as Xenc,h. It is worth noting that Xenc,0 = Xpatch.
This granularity-decreasing process is then iteratively applied across all layers in 1 ≤ h ≤ H . We
summarize the merging procedure at level h as:

X̂enc,h
n,p := Emerge

h

(
Xenc,h

n,r×p, . . . ,X
enc,h
n,r×(p+1)

)
, 0 ≤ p ≤ P

rh
,

for 0 ≤ h ≤ H − 1, and then

Xenc,h := BiSHopModule(X̂enc,h−1), for 1 ≤ h ≤ H. (3.8)

Decoder. The decoder (yellow block on RHS of Figure 2 (d)) captures information from each
level of encoded data. To accomplish this, we utilize H stacked BiSHopModuless and employ a
positional embedding matrix Epos ∈ RP×S to extract encoded information for prediction, where S
represents the number of extracted feature used for future forecast. Specifically, at the first level,
we use the learnable matrix Epos to decode S different representations through a BiSHopModules,
obtaining Xpos,0. We then pass Xpos,0 through GSH with the corresponding encoded data, followed
by the addition to the encoded data at the h-th level Xenc,h. Next, we process the output through
one LayerNorm layer, one MLP layer, and another LayerNorm layer, as in

Xpos,h :=

{
BiSHopModules(Epos), h = 0,

BiSHopModules(Xdec,h−1), 1 ≤ h ≤ H.
(3.9)

X̂dec,h := GSH(Xpos,h,Xenc, h), 1 ≤ h ≤ H, (3.10)

X
dec,h

:= LayerNorm(X̂dec,h +Xpos,h), (3.11)

Xdec,h := LayerNorm(X
dec,h

+ MLP(X
dec,h

)). (3.12)

For the final prediction, we flatten Xdec,H and pass it to a new MLP predictor.

Learnable Sparsity at Each Scale. Drawing inspiration from the dynamic sparsity observed in
the human brain [Leutgeb et al., 2005, Stokes et al., 2013, Willshaw et al., 1969], the parameter
α for each GSH layer is a learnable parameter by design [Correia et al., 2019, Wu et al., 2024b],
which allows BiSHopModule to adapt to different sparsity for different resolutions. Namely,
the learned representations at each scale are equipped with scale-specific sparsity.
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4 Experimental Studies

In this section, we compare BiSHop with SOTA tabular learning methods, following the tabular
learning benchmark paper [Grinsztajn et al., 2022]. We summarize our experimental results in
Table 1 and Figure 3.

4.1 Experimental Setting

Our experiment consists of two parts: firstly, we benchmark commonly used datasets in the litera-
ture; secondly, we follow the tabular benchmark [Grinsztajn et al., 2022], applying it to a broader
range of datasets on both classification and regression tasks.

Datasets I. In the first experimental setting, we evaluate BiSHop on 9 common classification
datasets used in previous works [Gorishniy et al., 2021, Grinsztajn et al., 2022, Huang et al.,
2020, Somepalli et al., 2021]. These datasets vary in characteristics: some are well-balanced, and
others show highly skewed class distributions; We set the train/validation/test proportion of each
dataset as 70/10/20%. Please see Appendix C.1 for datasets’ details.

Datasets II. In the second experimental setting, we test BiSHop in the tabular benchmark [Grin-
sztajn et al., 2022]. The datasets compiled by this benchmark consist of 4 OpenML suites:

• Categorical Classification (CC, suite_id: 334),

• Numerical Classification (NC, suite_id: 337),

• Categorical Regression (CR, suite_id: 335),

• Numerical Regression (NR, suite_id: 336).

Both CC and CR include datasets with numerical and categorical features, whereas NC and NR only
contain numerical features. Due to limited computational resources, we randomly select one-third
of the datasets from each suite for evaluation. We evaluate BiSHop on each suit with 3-6 different
datasets and truncate to 10,000 training samples for larger datasets (corresponding to medium-size
regimes in the benchmark). For these datasets, we allocate 70% of the data for the training set
(7,000 samples). Of the remaining 30%, we allocate 30% for the validation set (900 samples), and
the rest 70% for the test set (2,100 samples). All samples are randomly chosen from the original
dataset and perform identical preprocessing steps of the previous benchmark [Grinsztajn et al.,
2022].
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Metrics. We use the AUC score for the first experimental setting, aligned with literature. We use
accuracy for classification task and R2 score for regression task in the second experimental setting,
aligned with [Grinsztajn et al., 2022].

Table 1: BiSHop versus SOTA Tabular Learning Methods (Dataset II). Following the benchmark
[Grinsztajn et al., 2022], we evaluate BiSHop against SOTA methods, including Deep Learning meth-
ods (MLP, ResNet, FT-Transformer, SAINT) and Tree-Based methods (GBDT, RandomForest, XGBoost),
across various datasets. We randomly select a total of 19 datasets of four different tasks: categorical classi-
fication (CC), numerical classification (NC), categorical regression (CR), and numerical regression (NR). CC
and CR contain both categorical and numerical features, while NC and NR contain only numerical features.
Baseline results are quoted from the benchmark paper [Grinsztajn et al., 2022]. We report with the best
Accuracy scores for CC and NC, and R2 score for CR and NR, (both in %) by HPO. We also report the num-
ber of HPOs used in BiSHop. Hyperparameter optimization of our method employs the “sweep” feature of
Weights and Biases [Biewald et al., 2020]. In the 19 different datasets, BiSHop delivers 11 optimal and 8
near-optimal results (within 1.3% margin), using less than 10% (on average) of the number of HPOs used
by the baselines.

Dataset ID BiSHop # of HPOs FT-Transformer GBDT MLP RandomForest ResNet SAINT XGBoost

CC
361282 66.08 16 65.63 65.76 65.32 65.53 65.23 65.52 65.70
361283 72.69 1 71.90 72.09 71.41 72.13 71.4 71.9 72.08
361286 69.80 10 68.97 68.62 69.06 68.49 69.00 68.87 68.20

CR

361093 98.98 23 98.06 98.34 98.07 98.25 98.04 97.77 98.42
361094 99.98 64 99.99 100 99.99 100 99.97 99.98 100
361099 94.12 64 94.09 94.26 93.71 93.69 93.71 93.75 94.77
361104 99.94 70 99.97 99.98 99.98 99.98 99.96 99.9 99.98
361288 57.96 93 57.48 55.75 58.03 55.79 58.3 57.09 55.75

NC

361055 78.29 4 77.73 77.52 77.41 76.35 77.53 77.41 75.91
361062 98.82 15 98.50 98.16 94.70 98.24 95.22 98.21 98.35
361065 86.32 2 86.09 85.79 85.6 86.55 86.3 86.04 86.19
361273 60.76 9 60.57 60.53 60.50 60.49 60.54 60.59 60.67
361278 73.05 2 72.67 72.35 72.4 72.1 72.41 72.37 72.16

NR

361073 99.51 8 99.51 99.0 97.31 98.67 96.19 99.51 99.15
361074 87.96 34 91.83 85.07 91.81 83.3 91.56 91.86 90.76
361077 82.4 53 73.28 83.97 83.72 83.72 71.85 70.1 83.66
361079 60.76 19 53.09 57.45 48.62 50.16 51.77 46.79 55.42
361081 98.67 13 99.69 99.65 99.52 99.31 99.67 99.38 99.76
361280 56.98 96 57.48 54.87 58.46 55.27 57.81 56.84 55.49

Score mean 81.21 - 80.34 80.48 80.3 79.84 79.81 79.68 80.65

Rank

mean 2.79 - 3.58 4.21 4.74 5.53 5.05 5.26 3.84
min 1 - 1 1 1 1 1 1 1
max 8 - 6 8 8 8 8 8 8
med. 1 - 4 4 5 6 5 5 3

Baselines I. In the first experimental setting, we select 5 deep learning and 3 tree-based base-
lines, including (i) DL-based method such as MLP, TabNet, TabTransformer, FT-Transformer
[Gorishniy et al., 2021], SAINT [Somepalli et al., 2021], TabPNF [Hollmann et al., 2023], TAN-
GOS [Jeffares et al., 2023], T2G-FORMER [Yan et al., 2023] and (ii) tree-based methods such as
LightGBM, CatBoost, and XGBoost [Chen et al., 2015]. For each dataset, we conduct up to 200
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random searches on BiSHop to report the score of the best hyperparameter configuration. We stop
HPOs when observing the best result. Baselines and benchmark datasets’ results are quoted from
competing papers when possible and reproduced otherwise. We report the reproduced results in
Appendix C. Notably, we quote the best result from all baselines if multiple results are available.

Baselines II. In the second experimental setting, we reference baselines results3 from the bench-
mark paper [Gorishniy et al., 2021], comprising 4 deep learning methods and 3 tree-based meth-
ods, including (i) DL-based method such as MLP, ResNet [He et al., 2015], FT-Transformer [Gor-
ishniy et al., 2021], SAINT [Somepalli et al., 2021] and (ii) tree-based methods such as Ran-
domForest, GradientBoostingTree (GBDT), and XGBoost [Chen et al., 2015]. We select the best
results of each method from the benchmark [Grinsztajn et al., 2022]. Notably, these best results
take 400 HPOs according to Grinsztajn et al. [2022].

Setup. BiSHop’s default parameter settings are as follows: Embedding dimension G = 32; Stride
factor L = 8; Number of pooling vector C = 10; Number of BiSHopModules H = 3; Number of
aggregation in encoder r = 4; Number of representation decoded S = 24; Dropout = 0.2; Learn-
ing rate: 5 × 10−5. For numerical embedding, we only gather quantile information from training
data to process the embedding function. For hyperparameter tuning, we use the “sweep” feature
of Weights and Biases [Biewald et al., 2020]. Notably, due to the computational constraints, we
manually end the HPO once our method surpass the best performance observed in the bench-
marks. We report search space for all hyperparameters in Table 6 and other training details in
Appendix C.2. The optimization is conducted on training/validation sets, and we report the aver-
age test set scores over 3 iterations, using the best-performed configurations on the validation set.
We show implementation and training details in the appendix.

Results. We summarize our results of the Baselines I in Figure 3 and the results of the Baselines
II in Table 1. In Figure 3, BiSHop outperforms both tree-based and deep-learning-based methods
by a significant margin in most datasets. In Table 1, BiSHop achieves optimal or near-optimal
results with less 10% numbers (on average) of HPO in a tabular benchmark [Grinsztajn et al.,
2022].

4.2 Ablation Studies

We conduct the following sets of ablation studies on Datasets I align with Grinsztajn et al. [2022].

Changing Feature Sparsity. In Figure 3, we change feature sparsity on our datasets following
Grinsztajn et al. [2022, Figure 4 & 5]. Firstly, we compute the feature importance using Random

3https://github.com/LeoGrin/tabular-benchmark
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Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis

MLP 72.5‡ 92.9‡ 83.9‡ 90.5‡ 73.5‡ 84.6‡ 98.4‡ 91.0‡ 82.59
TabNet 90.49 91.76∗ 79.61∗ 90.72∗ 77.77 84.39 99.80 67.55∗ 87.81
TabTransformer 73.7‡ 93.4‡ 83.5‡ 90.6‡ 75.1‡ 85.6‡ 98.5‡ 91.8‡ 82.85
FT-Transformer 90.60 91.83 86.06 92.15 74.60 80.83 100.00 92.04 89.02
SAINT 91.6† 93.30∗ 84.67∗ 91.67∗ 76.6⋆ 86.47∗ 98.54∗ 93.21∗ 85.52
TabPFN 88.48 88.17 84.03 88.59 75.32 83.30 100 93.31 78.34
TANGOS 90.23 88.98 85.74 90.44 73.52 84.32 100 90.83 83.59
T2G-FORMER 85.96⋄ 94.47 85.40 92.35 82.58 86.42 100 94.86 73.68⋄

LightGBM 92.9† 93.39∗ 83.17∗ 92.57∗ 77.43 85.36∗ 100.00 92.97∗ 87.48
CatBoost 92.8† 90.47∗ 84.77∗ 90.80∗ 81.59 85.44∗ 100.00 93.05∗ 87.53
XGBoost 92.8† 92.96∗ 81.78∗ 92.31∗ 75.3⋆ 83.59∗ 100.00 92.70∗ 86.72

BiSHop 92.97 93.95 88.49 92.97 91.88 87.99 100.00 96.14 90.63

Figure 3: (LHS:) BiSHop versus SOTA Tabular Learning Methods (Dataset I). We evaluate BiSHop
against predominant SOTA methods, including Deep Learning methods (MLP, TabNet, TabTransformer,
FT-Transformer, SAINT, TabPFN, TANGOS, T2G-FORMER) and Tree-Based methods (LightGBM, Cat-
Boost, XGBoost), across various datasets. We report the average AUC scores (in %) of 3 runs, with vari-
ances omitted as they are all ≤ 0.13%. Results quoted from [Borisov et al., 2022, Huang et al., 2020,
Liu et al., 2022, Somepalli et al., 2021] are marked with ⋆, ∗, †, and ‡, respectively. If multiple results
are available across different benchmark papers, we quote the best one. When unavailable, we reproduce
the baseline results independently. Hyperparameter optimization employs the “sweep” feature of Weights
and Biases [Biewald et al., 2020], with 200 iterations of random search for each setting. Our results indi-
cate that BiSHop outperforms both tree-based and deep-learning-based methods by a significant margin.
(RHS:) Changing Feature Sparsity. Following [Grinsztajn et al., 2022], we remove features in both
randomly (red), increasing order of feature importance (purple), and decreasing (blue) order of feature
importance (feature importance order obtained by random forest). We report the average AUC score across
all datasets from BiSHop, XGBoost, and LightGBM. The results highlight BiSHop’s capability in handling
sparse features.

Forest. Secondly, we remove features in both increasing (solid curves) and decreasing (dashed
curves) order of feature importance. For each order, we report the average AUC score over all
datasets at each percentage from BiSHop, XGBoost, and LighGBM. Our results (RHS of Figure 3)
indicate that BiSHop has the capacity to handle sparse features.

Rotation Invariance. In Table 18, we conduct experiments on rotating the datasets and BiSHop-
Module’s direction, both individual rotation and combined rotation:

(R1) Rotate the 2 directions (row-wise and column-wise)

(R2) Rotate the datasets

(R3) Rotate the 2 directions and the datasets

Our results indicate (i) BiSHop is robust against column-row switch in BiSHopModule, and (ii)
BiSHop addresses the Non-Rotationally Invariant Data Structure challenge (C1).
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In detail, we report the average AUC score over all datasets at each rotation. We first assess (R1).
The results for (R1) show a marginal (< 1%) performance drop across datasets. To discuss the
rotational invariance problem, we access (R2) by following the same procedure as outlined in
Grinsztajn et al. [2022, Section 5.4]. The results for (R2) do not indicate a significant drop in
performance. Furthermore, the results for (R3) provide further validation for both (R1) and (R2).
Our results indicate that BiSHop addresses (C1).

Hierarchy of BiSHopModule. In Table 19, we assess the impacts of stacking different layers
of BiSHopModule. We report the average AUC over all datasets at different layers of BiSHop-
Module. Our results indicate that 4 layers of BiSHopModule marginally maximize the model
performance.

Other Ablation Studies. We also conduct other ablation studies including:

• Component Analysis. In Table 16, we remove each component at a time. We report the
implementation details in Appendix D.1. For each removal, we report averaged AUC scores
over all datasets. Overall, each component contributes to varying degrees of performance.

• Comparison with the Dense Modern Hopfield Model. In Appendix D.2, we compare
the performance of Sparse, Dense Hopfield Models, and Attention Mechanism. Our results
indicate that the generalized Sparse Hopfield Mmdel outperforms the other two methods.

• Convergence Analysis. In Appendix D.3, we compare the converging rate of Sparse and
Dense Hopfield Models. Our results indicate that the generalized sparse modern Hopfield
model converges faster than the Dense Model.

Appendix D includes all details of ablation experiments.

5 Conclusion

We address the gap highlighted by Grinsztajn et al. [2022] where deep learning methods trail
behind tree-based methods. We present the Bi-Directional Sparse Hopfield Model (BiSHop) for
deep tabular learning, inspired by the recent intersection of Hopfield models with attention mech-
anisms. Leveraging the generalized sparse Hopfield layers as its core component, BiSHop effec-
tively handles the hardness of deep tabular learning, with the inclusion of two important inductive
biases of tabular data (C1, C2).

Comparing with Existing Works. Empirically, our model consistently surpasses SOTA tree-
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based and deep learning methods by 3% across common benchmark datasets. Moreover, our
model achieves optimal or near-optimal results within 16% number of HPOs, compared with
methods in the tabular benchmark [Grinsztajn et al., 2022]. We deem these results as closing the
performance gap between DL-based and tree-based tabular learning methods, making BiSHop a
promising solution for deep tabular learning.

Limitation. One notable limitation of our study is the non-utilization of the external memory
capabilities inherent in modern Hopfield models. We see the integration of these capabilities,
especially in memory augmented large models, as a compelling direction for future research.
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Boarder Impact

Our work aim at addressing the long standing problem of tabular learning of DL-based model.
We do not expect any negative social impact of our work.

While the focus is on tabular learning applications, the perspective isn’t confined to just tabular
data. We believe this methodology also presents an opportunity to delve into large foundational
models, including extensive language models, through a perspective shaped by contemporary
neuroscience.
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A Table of Notations

Table 2: Table of Notations.

Notation Description

a,b, c . . . Vectors
A,B,C . . . Matrices
⟨a,b⟩ Inner product of vectors a and b, defined as aTb
[I] Index set {1, · · · , I} for a positive integer I
∥·∥2 Spectral norm for matrices (aligned with l2-norm for vectors)

ξ ∈ Rd Memory patterns (keys)
x ∈ Rd State/configuration/query pattern
Ξ := (ξ1, · · · , ξM) ∈ Rd×M Shorthand for stored memory (key) patterns {ξµ}µ∈[M ]

n = ∥x∥ Norm of the query pattern
m = Maxµ∈[M ] ∥ξµ∥ Maximum norm among the memory patterns
ΞTx M -dimensional overlap vector (⟨ξ1,x⟩ , · · · , ⟨ξµ,x⟩ , · · · , ⟨ξM ,x⟩) in RM[
ΞTx

]
κ

The κ-th element of ΞTx
κ The number of non-zero element of Sparsemax

n Norm of x, denoted as n := ∥x∥
m Largest norm of memory patterns, denoted as m := Maxµ∈[M ] ∥ξµ∥

R The minimal Euclidean distance across all possible pairs of memory patterns, R := 1
2
Minµ,ν∈[M ] ∥ξµ − ξν∥

Sµ The sphere centered at the memory pattern ξµ with finite radius R
x⋆
µ The fixed point of T covered by Sµ, i.e. x⋆

µ ∈ Sµ

∆µ The separation of a memory pattern ξµ from all other memory patterns Ξ
∆̃µ The separation of ξµ at a given x from all memory patterns Ξ

E(·) Embeddings
x ∈ RN Single tabular data point with N features (starting from Section 3).
Concat([A,B], axis = 0) Concatenations of A,B through first dimension (axis = 1 for concatenation through second dimension)
X The internal embedding matrix of x.
⌈·⌉ Ceiling function
Xi,j The element of i-th rows and j-th columns in X

B Supplementary Theoretical Backgrounds

To highlight the computational benefits of the generalized sparse modern Hopfield model, we
quote relevant results from [Wu et al., 2024b] here.

B.1 Definition of Memory Storage and Retrieval and Separation of Patterns

We adopt the formal definition of memory storage and retrieval from [Ramsauer et al., 2020] for
continuous patterns.

Definition B.1 (Stored and Retrieved). Assuming that every pattern ξµ surrounded by a sphere Sµ

with finite radius R := 1
2
Minµ,ν∈[M ] ∥ξµ − ξν∥, we say ξµ is stored if there exists a generalized

fixed point of T , x⋆
µ ∈ Sµ, to which all limit points x ∈ Sµ converge to, and Sµ ∩ Sν = ∅ for

µ ̸= ν. We say ξµ is ϵ-retrieved by T with x for an error.

Then we introduce the definition of pattern separation for later convenience.
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Definition B.2 (Pattern Separation). Let’s consider a memory pattern ξµ within a set of memory
patterns Ξ.

1. The separation metric ∆µ for ξµ with respect to other memory patterns is the difference
between its self-inner product and the maximum inner product with any other pattern:

∆µ = ⟨ξµ, ξµ⟩ −Max
ν,ν ̸=µ

⟨ξµ, ξν⟩ . (B.1)

2. Given a specific pattern x, the relative separation metric ∆̃µ for ξµ with respect to other
patterns in Ξ is defined as:

∆̃µ = Min
ν,ν ̸=µ

(⟨x, ξµ⟩ − ⟨x, ξν⟩) . (B.2)

B.2 Supplementary Theoretical Results for Generalized Sparse Modern Hop-
field Model

Theorem B.1 (Retrieval Error, Theorem 3.1 of [Wu et al., 2024b]). Let TDense be the retrieval
dynamics of the dense modern Hopfield model [Ramsauer et al., 2020]. It holds ∥T (x)− ξµ∥ ≤
∥TDense(x)− ξµ∥ for all µ.

Theorem B.1 implies two computational advantages:

Corollary B.1.1 (Faster Convergence). Computationally, Theorem B.1 suggests that T converges
to fixed points using fewer iterations than Tdense for the same error tolerance. This means that T
retrieves stored memory patterns more quickly and efficiently than its dense counterpart.

Corollary B.1.2 (Noise-Robustness). In cases of noisy patterns with noise η, i.e. x̃ = x+η (noise
in query) or ξ̃µ = ξµ + η (noise in memory), the impact of noise η on the sparse retrieval error
∥T (x)− ξµ∥ is linear for α ≥ 2, while its effect on the dense retrieval error ∥TDense(x)− ξµ∥ (or
∥T (x)− ξµ∥ with 2 ≥ α ≥ 1) is exponential.

Remark B.1. Corollary B.1.1 does not imply computational efficiency. The proposed model’s
sparsity falls under the category of sparsity-inducing normalization maps [Correia et al., 2019,
Krotov and Hopfield, 2016, Peters et al., 2019, Tay et al., 2022]. This means that, during the
forward pass, the space complexity remains at O(n2), on par with the dense modern Hopfield
model.

Remark B.2. Nevertheless, Corollary B.1.1 suggests a specific type of “efficiency" related to
faster memory retrieval compared to the dense Hopfield model. In essence, a retrieval dynamic
with a smaller error converges faster to the fixed points (stored memories), thereby enhancing
efficiency.
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C Experimental Details

Computational Hardware. All experiments are conducted on the platform with NVIDIA GEFORCE
RTX 2080 Ti, A100 GPUs, and INTEL XEON SILVER 4214 @ 2.20GHz.

C.1 Additional Details on Datasets

We describe all the dataset used in our experiments in Table 3, as well as the download links to
each dataset in Table 5.

Table 3: Details of Datasets. We summarize the statistics of 9 datasets we have used in Baseline
I, 8 of which involve binary classification and 1 of which involve multi-class classification (4
classes).

Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis

# Numerical 6 7 3 6 14 6 58 41 54
# Categorical 8 9 16 8 4 4 0 0 0
# Train 34190 31648 4923 34189 1809 7001 3221 738 58613
# Validation 9769 9042 1407 9768 517 2000 920 211 16747
# Test 4884 4522 703 4885 258 1000 461 106 8373
# Task type Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Multi-Class

The links to the four OpenML suites from [Grinsztajn et al., 2022] are CC: 4, NC5, CR6, NR7

C.2 Baselines

We evaluate BiSHop by comparing it to state-of-the-art (SOTA) tabular learning methods, specif-
ically choosing top performers in recent studies [Gorishniy et al., 2021, Grinsztajn et al., 2022,
Somepalli et al., 2021].

• LightGBM [Ke et al., 2017]

• CatBoost [Prokhorenkova et al., 2018]

• XGBoost [Chen et al., 2015]

• MLP [Somepalli et al., 2021]

4https://www.openml.org/search?type=benchmark&sort=date&study_type=task&id=300
5https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298
6https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=299
7https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297
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Table 4: Details of Datasets. We summarize the statistics of 19 datasets covering four suite:
categorical classification (CC), numerical classification (NC), categorical regression (CR), and nu-
merical regression (NR).

Dataset ID Dataset Name # of Categorical # of Numerical

CC
361282 albert 11 21
361283 default-of-credit-card-clients 2 20
361286 compas-two-years 9 3

CR

361093 analcatdata_supreme 5 3
361094 visualizing_soil 1 4
361099 Bike_Sharing_Demand 5 7
361104 SGEMM_GPU_kernel_performance 6 4
361288 abalone 1 8

NC

361055 credit 0 10
361062 pol 0 26
361065 MagicTelescope 0 10
361273 Diabetes130US 0 7
361278 heloc 0 22

NR

361073 pol 0 27
361074 elevators 0 17
361077 Ailerons 0 34
361079 house_16H 0 17
361081 Brazilian_houses 0 9
361280 abalone 0 8

• TabNet [Arik and Pfister, 2021]

• TabTransformer [Huang et al., 2020]

• FT-Transformer [Gorishniy et al., 2021]

• SAINT [Somepalli et al., 2021]

• TabPFN [Hollmann et al., 2023]. We implement TabPFN using 32 data permutations for
ensemble same as the original paper setting and truncate the training set to 1024 instances.

• T2G-FORMER [Yan et al., 2023]. We implement T2G-FORMER by applying quantile
transformation from the Scikit-learn library to Baseline I datsets, aligning with the default
setting in. The hyperparameter space is at Table 13.

• TANGOS [Jeffares et al., 2023] We adapted the official TANGOS source code to include
the datasets from Baseline I alongside the original datasets. The hyperparameter space is at
Table 14.

Selection of Benchmark. We select Grinsztajn et al. [2022] as our benchmark for several rea-
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Table 5: Dataset Sources

Dataset URL

Adult http://automl.chalearn.org/data
Bank https://archive.ics.uci.edu/ml/datasets/bank+marketing
Blastchar https://www.kaggle.com/blastchar/telco-customer-churn
Income https://www.kaggle.com/lodetomasi1995/income-classification
SeismicBumps https://archive.ics.uci.edu/ml/datasets/seismic-bumps
Shrutime https://www.kaggle.com/shrutimechlearn/churn-modelling
Spambase https://archive.ics.uci.edu/ml/datasets/Spambase
Qsar https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
Jannis http://automl.chalearn.org/data

sons. Unlike other benchmarks that focus solely on tasks such as classification [Gardner et al.,
2023], this benchmark encompasses both regression and classification tasks. This benchmark
provides results from 400 hyperparameter optimization (HPO) trials, ensuring each model’s hy-
perparameter search is sufficient. In contrast, some methods, such as [McElfresh et al., 2023],
restrict HPO to 10 hours on a specific GPU. As a deep-learning-based method, BiSHop requires
more training time compared to tree-based methods. Moreover, the comparison under the same
time constraints on different GPUs is unfair.

C.3 Implementation Details

Data Prepossessing. We label encoded the categorical features, and keep the raw numerical fea-
tures for further encoding.

Categorical Features. For tree based method, we employ the build in categorical embedding
method. For MLP we use one-hot encoding.

Numerical Features. We implement Piece-wise Linear Encoding from [Gorishniy et al., 2021,
2022] which change the original scalar values of numerical features to a one-hot-like encoding.

Evaluation. For each model hyperparameter configuration, we run 3 experiments on the best
configuration and report the average AUC score on the test set.
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Table 6: BiSHop Hyperparameter Space

Parameter Distribution Default

Number of representation decoded [2, 4, 8, 16, 24, 32, 48, 64, 128, 256, 320] 24
Stride factor [1, 2, 4, 6, 8, 12, 16, 24] 8

Embedding dimension [16, 24, 32, 48, 64, 128, 256, 320] 32
Number of aggregation in encoder [2, 3, 4, 5, 6, 7, 8] 4

Number of pooling vector [5, 10, 15] 10
Dimension of hidden layers (Dmodel) [64, 128, 256, 512, 1024] 512

Dimension of feedforward network (in MLP) [128, 256, 512, 1024] 256
Number of multi-head attention [2, 4, 6, 8, 10, 12] 4

Number of Encoder [2, 3, 4, 5] 2
Number of Decoder [0, 1] 2

Learning rate LogUniform[(1e-6, 1e-4) 5e-5
ReduceLROnPlateau factor=0.1, eps=1e-6 factor=0.1, eps=1e-6

C.4 Training Details

Learning Rate Scheduler. We use ReduceLROnPlateau to fine tuning the learning rate to im-
prove convergence and model training progress.

Optimizer. We use Adam optimizer to minimize cross-entropy. The coefficients of Adam opti-
mizer, betas, are set to (0.9, 0.999).

Patience. We continue training till there are Patience = 20 consecutive epochs where validation
loss doesn’t decrease or we reach 200 epochs. Finally, we evaluate our model on test set with the
last checkpoint.

HPO. We report the number of hpo for each dataset from baseline I in Table 8. We report hy-
perparameter configurations for CatBoost in Table 9, LightGBM in Table 10, TabNet in Table 11,
XGBoost in Table 12, T2G-Former in Table 13, Tangos in Table 14. We follow the same proce-
dure of HPOs for Tangos and T2G-Former in Yan et al. [2023] and Jeffares et al. [2023], including
the number of trials. For other methods, we follow the same settings as BiSHop.

Hyperparameter Importance Analysis. During random hyperparameter search, we observe that
learning rate is the most important hyperparameter (see Table 7). We use WandB "sweep" features
[Biewald et al., 2020] to calculate the importance of each hyperparameter. Our findings agree
with [Grinsztajn et al., 2022] suggesting that learning rate is the most important hyperparameter
for both neural network and gradient-boosted trees.
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Table 7: Hyperparameter Importance Scores. The importance is calculate from features im-
portance in RandomForest, averaging across all datasets. This results highlight learning rate is the
most crucial hyperparameter.

Hyperparameter RF Importance
Learning rate 0.17
Dropout 0.10
Number of heads 0.08
Number of aggregation 0.06
Dimension of hidden layers 0.06
Dimension of feed-forward network 0.13
Number of pooling factor 0.05
Number of encoder layer 0.05
Number of representation decoded 0.10

Table 8: Number of HPO in baseline I

Dataset # of HPO

Adult 36
Bank 26
Blastchar 52
Income 174
SeismicBumps 200
Shrutime 16
Spambase 1
Qsar 67
Jannis 137

Table 9: Hyperparameter configurations for CatBoost

Parameter Distribution Default

Depth UniformInt[3,10] 6
L2 regularization coefficient UniformInt[1,10] 3
Bagging temperature Uniform[0,1] 1
Leaf estimation iterations UniformInt[1,10] None
Learning rate LogUniform[1e-5, 1] 0.03
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Table 10: Hyperparameter configurations for LightGBM

Parameter Distribution Default

Number of estimators [50, 75, 100, 125, 150] 100
Number of leavs UniformInt[10, 50] 31
Subsample UniformInt[0, 1] 1
Colsample UniformInt[0, 1] 1
Learning rate LogUniform[1e-1,1e-3] None

Table 11: Hyperparameter configurations for TabNet

Parameter Distribution Default

n_d UniformInt[8,64] 8
n_a UniformInt[8,64] 8
n_steps UniformInt[3,10] 3
Gamma Uniform[1.0,2.0] 1.3
n_independent UniformInt[1,5] 2
Learning rate LogUniform[1e-3, 1e-1] None
Lambda sparse LogUniform[1e-4, 1e-1] 1e-3
Mask type entmax sparsemax

Table 12: Hyperparameter configurations for XGBoost

Parameter Distribution Default

Max depth UniformInt[3,10] 6
Minimum child weight LogUniform[1e-4,1e2] 1
Subsample Uniform[0.5,1.0] 1
Learning rate LogUniform[1e-3,1e0] None
Colsample bylevel Uniform[0.5,1.0] 1
Colsample bytree Uniform[0.5,1.0] 1
Gamma LogUniform[1e-3,1e2] 0
Alpha LogUniform[1e-1,1e2] 0
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Table 13: Hyperparameter configurations for T2G-FORMER

Parameter Distribution Default

# layers UniformInt[1,3] None
Feature embedding size UniformInt[64,512] None
Residual Dropout Const(0.0) None
Attention Dropout Uniform[0, 0.5] None
FNN Dropout Uniform[0, 0.5] None
Learning rate (main backbone) LogUniform[3e-5, 3e-4] None
Learning rate (column embedding) LogUniform[5e-3, 5e-2] None
Weight decay LogUniform[1e-6, 1e-3] None

Table 14: Hyperparameter configurations for TANGOS

Parameter Distribution Default

λ1 LogUniform[0.001,10] None
λ2 LogUniform[0.0001,1] None
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D Additional Numerical Experiments

D.1 Component Analysis

Table 16: Component Ablation. In the ablation study, we remove one component at a time. By
evaluating different crucial components in BiSHop, we prove that each component contributes to
various degrees of model performance. In particular, numerical embedding, decoder blocks, and
the BiSHopModule contribute the most.

Data BiSHop w/o Cat Emb w/o Num Emb w/o Patch Emb w/o Decoder w/o BiSHopModule

Adult 91.74 90.91 89.40 91.32 88.18 91.28
Bank 92.73 90.88 77.21 91.14 91.93 91.98

Blastchar 88.49 87.92 88.81 86.75 84.28 85.38
Income 92.43 91.01 90.38 91.56 91.44 91.36

SeismicBumps 91.42 90.03 87.85 89.33 80.75 79.34
Shrutime 87.38 86.49 81.75 81.32 86.26 85.41
Spambase 100 100 100 100 100 100

Qsar 92.85 91.15 94.69 91.50 93.04 91.65
Jannis 89.66 87.95 87.50 87.62 86.58 86.10

Average 91.86 90.82 88.62 90.06 89.16 89.17

We separately remove each component of BiSHop. We use the default hyperparameters in Table 6
for other components. We report the average AUC score of three runs using the default parameter
for all datasets in Table 16.

• Without Cat Emb: We remove both individual and shared embedding methods as de-
scribed in the tabular embedding section, replacing them with PyTorch’s embedding layers
(torch.nn.Embedding) and keep the embedding dimension unchanged.

• Without Num Emb: We remove the Piecewise Linear Encoding method for nu-
merical features, directly concatenating numerical features with the output of categorical
embedding as detailed in Section 3.1.

• Without Patch Embedding: We remove the patch embedding method by setting the stride
factor L to 1.

• Without Decoder: We remove the decoder blocks in BiSHop and pass the encoded data
directly to MLP predictor.

• Without BiSHopModule: We replace the column-wise block and row-wise block in the
BiSHop module with a MLP of hidden size 512.

The results demonstrate that each component contributes to varying degrees to the BiSHop model,
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with numerical embedding, decoder blocks, and the BiSHopModule being the most significant
contributors.

D.2 Comparison with the Dense Modern Hopfield Model

Using the default hyperparameters of BiSHop, we evaluate its performance using three distinct
layers: (i) the GSH (generalized sparse modern Hopfield model), (ii) the Hopfield (dense mod-
ern Hopfield model [Ramsauer et al., 2020]) and (iii) Attn (attention mechanism [Vaswani et al.,
2017]). We report the average AUC score over 10 runs in Table 17.

Table 17: Comparing the Performance of Sparse versus Dense Modern Hopfield Models and At-
tention Mechanism. We contrast the performance of our generalized sparse modern Hopfield model with
that of the dense modern Hopfield model and the attention mechanism. We achieve this by substituting
the GSH layer with the Hopfield layer from [Ramsauer et al., 2020] and the Attn layer from [Vaswani
et al., 2017]. We report the average AUC score (in %) over 10 runs, with variances omitted as they are
all ≤ 0.08%. The results indicates the superior performance of our proposed generalized sparse modern
Hopfield model across datasets.

AUC (%) Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis Mean AUC

GSH 91.74 92.73 88.49 92.43 91.42 87.38 100 92.85 89.66 91.86
Hopfield 91.72 92.60 85.31 91.65 78.63 86.81 100 91.27 85.04 89.23
Attn 91.44 92.46 83.14 91.46 78.42 83.04 100 89.88 88.28 88.68

D.3 Convergence Analysis

We calculate the validation loss and AUC score using the same default parameters and compare
them with the dense modern Hopfield model. For ease of presentation, we only plot the results of
six datasets (Blastchar, Shrutime, Income, Bank, Qsar and Jannis). We use the same hyperparam-
eter for each dataset for both GSH and Hopfield. We plot the results in Figure 4 with the mean of
30 runs. The result indicate that GSH converges faster and achieves an AUC score that is equal to
or higher than Hopfield.

D.4 Rotation Invariance

In Table 18, we conduct the following experiments on rotating the datasets and BiSHopModule’s
direction, both individually and in combination:

(R1) Rotate the 2 directions (row-wise and column-wise). To validate the effectiveness of bi-
directional design in BiSHop, we conduct experiments by rotating these directions and re-
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Figure 4: Convergence Analysis. We plot the validation loss and AUC score curves of generalized sparse
(GSH) and dense (Hopfield) Hopfield models. The results indicate that the sparse Hopfield model (solid
lines) converges faster and yields superior accuracy.

porting the performance and average result. The results indicate that the direction of BiSHop
is vital for performance.

(R2) Rotate the datasets. Following the experiment setup in [Grinsztajn et al., 2022], we ran-
domly rotate datasets using a randomly generated special orthogonal matrix. The results
indicate that BiSHop is robust against data rotation.

(R3) Rotate the 2 directions and the datasets. To further validate our findings, we then apply
both (R1) and (R2). The results show a drop in performance across nearly every dataset and
align with our findings in (R1) and (R2).

The average AUC score across all datasets is reported for each type of rotation.

Table 18: Comparing the Performance of default BiSHop with various configurations
on BiSHop module and datasets. We apply the following configurations to BiSHopModule and
datasets to validate BiSHop’s ability to tackle (C1): rotate the 2 directions (R1), rotate the datasets
(R2), and combined column-wise, row-wise, and rotate the 2 directions and the datasets (R3).

Method/Dataset Adult Bank Blastchar Income SeismicBumps Shrutime Spambase Qsar Jannis Average

BiSHop 91.74 92.73 88.49 92.43 91.42 87.38 100 92.85 89.66 91.86
(R1) 91.52 92.04 88.38 91.69 89.81 85.83 100 93.65 86.55 91.05
(R2) 91.67 92.21 88.51 91.41 92.74 87.68 100 93.08 85.03 91.37
(R3) 91.44 92.07 85.68 91.62 89.92 85.85 100 94.18 87.1 90.88
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D.5 Hierarchy of BiSHopModule

In Table 19, we assess the impacts of stacking different layers of BiSHopModule. We report the
average AUC over all datasets for different layers of BiSHopModule.

Details. We progressively increase the layers within BiSHopModule from 1 to 8 in the Encoder
and Decoder layers and keep other parameters at their default setting.

Results. Table 19 summarizes the performance in AUC and average over all datasets for various
layers. The results suggest that 4 layers are the optimal setting to maximize the performance.

Table 19: Performance Comparison with stacking various layers of BiSHopModule. We
vary different layers of BiSHopModule in the encoder-decoder structure. The results suggest 4
layers of BiSHopModule may maximize the model performance.

Layer/Dataset Adult Bank Blstchar Income SeismicBumps Shrutime Spambase Qsar Jannis Average

1 layer 91.52 92.32 88.55 91.58 92.20 86.33 100 94.03 84.39 91.21
2 layers 91.56 92.21 88.71 91.66 90.83 87.5 100 93.77 82.84 91.00
3 layers 91.65 92.38 88.47 91.50 93.11 87.34 100 93.08 85.09 91.40
4 layers 91.58 92.28 88.54 91.47 92.98 87.24 100 93.52 85.40 91.45
5 layers 91.57 92.17 88.55 91.47 90.12 87.69 100 93.37 84.93 91.10
6 layers 91.65 92.26 88.48 91.46 92.47 85.05 100 91.14 85.11 90.85
7 layers 91.54 92.16 87.88 91.47 93.04 87.26 100 92.05 84.69 91.12
8 layers 91.56 91.96 88.09 91.54 93.04 82.98 100 93.88 84.71 90.86

E Computational Time

Computational Complexity. We summarize the computational complexity for each function
used in BiSHop in Table 20. Here we use the same notation as introduced in the main paper: N cat

be the number of categorical features, N num be the number of numerical features, N = N num+N cat

be the total number of all features, G be the embedding dimension. P be the patch embedding
dimension, Dmodel be the hidden dimension, len(Q) be the size of query pattern, C be the number
of pooling vectors, len(Y ) be the size of memory pattern.

As for the computational complexity of the GSH layers [Wu et al., 2024b], a theoretical analysis
of the efficiency of modern Hopfield models can be found in [Hu et al., 2024c].

Computationally Time. For each dataset and hyperparameter configuration, the average training
time for BiSHop varies from 30 minutes to 2 hours. Based on different hyperparameter settings,
number of our model parameters varies from 107 to 108.
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Table 20: Computational Complexity

Function Name Time Complexity

Categorical Embedding O(G×N cat)
Numerical Embedding O(G×N cat)

Patch Embedding O(N × P ×Dmodel)
GSH O(len(Y )× len(Q)×Dmodel)

GSHPooling O(len(Q)× C ×Dmodel × P 2)
Merging O(N × P × (Dmodel)2)
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