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Abstract

We introduce a novel Proximal Policy Optimization (PPO) algorithm aimed at1

addressing the challenge of maintaining a uniform proton beam intensity delivery in2

the Muon to Electron Conversion Experiment (Mu2e) at Fermi National Accelerator3

Laboratory (Fermilab). Our primary objective is to regulate the spill process to4

ensure a consistent intensity profile, with the ultimate goal of creating an automated5

controller capable of providing real-time feedback and calibration of the Spill6

Regulation System (SRS) parameters on a millisecond timescale. We treat the7

Mu2e accelerator system as a Markov Decision Process suitable for Reinforcement8

Learning (RL), utilizing PPO to reduce bias and enhance training stability. A key9

innovation in our approach is the integration of neuralized PID controller into the10

policy fucntion, resulting in a significant improvement in the Spill Duty Factor11

(SDF) by 9.4%, surpassing the performance of the current PID controller baseline12

by an additional 2.2%. This paper presents the preliminary offline results based13

on a differentiable simulator of the Mu2e accelerator. It paves the ground works14

for real-time implementations and applications, representing a crucial step towards15

automated proton beam intensity control for the Mu2e experiment.16

1 Introduction17

We propose a novel RL-enhanced spill regularization system that incorporates a neuralized PID policy18

function to tackle the beam regularization challenge in the Mu2e experiments [Bartoszek et al., 2015]19

at Fermilab. Our objective is to create an automated controller that ensures consistent spill (proton20

beams) intensity during experiments meeting real-time control requirements [Narayanan et al., 2021].21

To achieve this, we model the Mu2e accelerator system as a Markov Decision Process and employ the22

Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017] to cast the spill regulations as23

sequential decision-making problems. Our main contribution is the integration of a neuralized PID24

policy function [Zribi et al., 2018] for our RL framework, encompassing the inductive bias of the25

standard PID controller (i.e. the proportional, integral, and derivative information) to better capture26

states at different stages. Our experiments on the Mu2e simulator show that we observed a 9.4%27

improvement in the Spill Duty Factor (SDF). Additionally, our method outperforms the standard PID28

controller referenced in [Narayanan et al., 2021].29

The Mu2e at Fermilab seeks to investigate new physics by studying the decay of muons into electrons.30

This intricate experiment places stringent demands on the quality of the proton beam directed at the31

production target, see Figure 1. These requirements are essential to minimize background particle32

physics processes that could obscure the discovery signal. Key prerequisites for the Mu2e experiment33

include achieving (i) a highly uniform extracted beam intensity during each spill of protons with 834

GeV kinetic energy, and (ii) maintaining beam losses below 2% of the total beam power to control35

radiation, thereby reducing equipment activation and minimizing personnel exposure. To achieve36

this, the Spill Regulation System (SRS) is developed to govern the extraction process of the beam37

and mitigate various sources of fluctuations in the spill profile. The SRS adjusts the magnetic field to38

control the spill intensity by adjusting the currents of the magnets throughout the accelerator ring at39

Fermilab (Figure 1 (c)). Ideally, SRS aims for the spill intensity to be uniform.40
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Figure 1: (a): The extraction (or ‘spill’) of protons from the Delivery Ring is noisy (deviates from 1) without
any regulation. (b): A snapshot of the beam in physical space at the extraction location. As the horizontal beam
size increases, a slice of circulating beam (that is past the position of the electrostatic septum) is extracted. (c): To
create the muons, proton pulses are made to hit a production target and muons are obtained from the secondaries.
The proton pulses with the required time structure are created by extracting them from an accelerator ring called
Delivery Ring at Fermilab and sending it to the Mu2e production target.

Our approach involves utilizing a Proximal Policy Optimization model with a differentiable Mu2e41

simulator to rectify random generalized spills. In each step of the process, the simulator generates a42

series of random spills, each with varying intensities (shown in Figure 1 (a)). Subsequently, the PPO43

model intervenes in each individual step to correct these generated spills by adjusting the control44

signal of the Mu2e simulator. The primary goal of our model is to bring all spills as close to a value45

of 1 as possible. To optimize this objective function while mitigating the influence of excessively46

high or low intensity spills, we implement an exponential moving average (EMA) to measure the47

deviation of the sequence from the desired value of 1. Additionally, we incorporate neuralized PID48

controller, encompassing proportional, integral, and derivative components in the state representation.49

By employing different random seeds, our simulator can generate a diverse range of spill types,50

providing a reflection of real-world scenarios.51

We demonstrate superior performance by numerically benchmarking our methods with PID controller.52

Specifically, our experiments compares SDF performance on different seeds. Our results show that53

our methods consistently improve the SDF in 9.4% for random generalized spills and achieve 2.2%54

improvements compared to the PID controller.55

The rest of this paper commences by a detailed description of our proposed method. Subsequently,56

we present numerical results to showcase the performance of our approach. Finally, we conclude this57

paper with a discussion of potential future directions and avenues for further research.58

2 Methodology59

In this section, we first introduce the machine learning’s role in optimizing Fermilab’s accelerator60

parameters. Then, we provide a detailed design of our RL-enhanced regularization system.61

2.1 Problem Setup62

While increasing beam intensity poses in Mu2e experiment its own challenges, maintaining beam size63

and minimizing beam losses — particles lost due to interactions with the beam vacuum pipe — are64

often the primary obstacles. To combat these, we approach the beam intensity regulation challenge,65

specifically controlling the spill regulation system, as a tracking control problem. The objective is to66

keep certain signals (spill intensity) close to specific reference values (approximately 1) by controlling67

the quadrupole currents in the regulation system. By doing so, we adjust the magnetic field, which68

subsequently adjusts the beam intensity throughout the delivery ring of the Mu2e experiments, as69

depicted in Figure 1 (c).70
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Figure 2: (a): The Mu2e simulator initially generates the beam. It proceeds to adjust the spill and employs this
adjusted spill to compute relevant information such as the state and reward. These pieces of information are
instrumental in training the RL agent, which in turn offers new actions to refine the spill. (b): The simulator
refines (corrects) the spill derived from noisy data. It conveys the state and reward, calculated using the corrected
spill, to update the value network responsible for evaluating the quality of the correction. Subsequently, the state
and loss generated by the value network contribute to the adaptation of the policy network. The policy network,
in response, generates new actions for spill regulation.

Objective. To handle the challenges posed by Mu2e experiment, we regulate the uniformity of the71

extracted spill by increasing its Spill Duty Factor (SDF),72

SDF := 1/
(
1 + σ2

spill

)
, (2.1)

by regulating the extraction process. The ultimate goal for SRS in the Mu2e experiment is to achieve73

a SDF of 0.6 or higher, with an ideal spill having a constant spill rate value of 1 and an SDF of 1.74

Mu2e Simulator. We employ a differentiable simulator to replicate the Mu2e experiments realis-75

tically. This simulator has the capability to produce spill intensity and compute associated data. It76

subsequently conveys this data to the RL agent, which aids in training the RL model. Once trained,77

the RL model transmits control signals back to the simulator, allowing it to regulate its spill based on78

these signals and provide the modified data to the RL agent. This process is shown in Figure 2 (a).79

2.2 Proximal Policy Optimization (PPO) Controller for Spill Regulation System80

Reward Function. Let xt be the observation of one single spill signal at time step t and σ = 1 be the81

corresponding reference value. The reward function at t is defined as the exponential moving average82

rt = −EMA(t, α), α ∈ [0, 1] , where EMA(t, α) = α|xt − σ|+ (1− α)EMA(t− 1, α). (2.2)

EMA gives more weight to recent spills and less weight to older spills. This helps in reducing the83

impact of short-term fluctuations in the spills, making it easier to identify underlying trends.84

PID Controller. A PID controller in discrete-time operation captures past details regarding tracking85

errors, their integrals, and derivatives within a linear control strategy. We denote the time series of86

spill signal at time t as ot = (x0, x1, · · · , xt). In formal terms, the discrete-time PID controller’s87

policy, characterized by its parameters KP , KI , and KD, is expressed as:88

πPID(ot) = KP (xt − σ) +KI

t∑
τ=0

(xτ − σ) +KD
(xt − σ)− (xt−1 − σ)

∆t
, (2.3)

where KP ,KI ,KD are tuneable scalar coefficients and ∆t is the discrete time interval.89

Model: PPO with Neuralized PID Policy. Our model leverages the inductive bias of PID90

(Proportional-Integral-Derivative) controller, and propose a neuralized PID policy function. Specif-91

ically, we incorporate tracking errors, integrals, and derivatives as components of the state vector92

st. Furthermore, we employ a linear network to parametrize the standard PID controller (2.3), and93

use it as a part of our policy function. Therefore, the policy function of our model not only enables94

the extraction of external information (based on previous actions) but also includes the PID control95

signals KP , KI , and KD as its learnable parameters. Remarkably, when learned effectively, our96

policy network outperforms the standard PID controller (2.3), making it a highly adaptable solution.97

Our approach incorporates three key components: the PPO algorithm, the EMA reward function, and98

the neuralized PID controller. The PPO algorithm, a reinforcement learning technique, plays a central99

role in optimizing policy functions to enhance decision-making in sequential tasks. We specifically100

chose PPO to refine our reward function. Rather than relying on a single spill for reward computation,101
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Figure 3: (LHS): Comparison of Spill Intensity: The spill intensity corrected by RL is closer to 1 when
compared to the PID-corrected spill. (RHS): Comparison of SDF: After 600 training iterations, the SDF
achieved by RL outperforms the SDF obtained through PID.

we employ EMA within the reward function. This approach allows us to both capture trends across102

a sequence of spills and mitigate fluctuations. Additionally, we integrate the neuralized PID bias103

into our policy network. In this setup, our policy network consists of a trainable PID controller and104

a linear projection of past actions. Let’s denote the state at time step t as st, the action as at. We105

combine the PID policy πPID and action policy πaction to formulate RL policies as π. The variable at106

represents the control signal used for regulating the spill. The state st encompasses both the previous107

action at−1 and the time series of the spill signal ot. As a result, the action at time t, at, can be108

represented as follows:109

at = π(st) = πPID(ot) + πaction(at−1), (2.4)

The learning process is shown in Figure 2 (b).110

3 Experimental Studies111

We validate our method by using the Mu2e differentialble simulator [Narayanan et al., 2021] as112

the RL environment. Our experiments involve the utilization of both the Mu2e simulator and our113

RL-enhanced spill regularization system.114

Settings. We configure various hyperparameters for both the simulator and the RL agent in our115

experiment. Specifically, we configure the simulator to generate 430 spills per iteration, equivalent to116

10 data points per millisecond within a 43 ms spill duration, aligning closely with realistic settings as117

detailed in [Narayanan et al., 2021]. In terms of reward calculation, we choose a value of α = 0.1 for118

the EMA component. Regarding the RL agent, we employ the stable-baselines3 PPO model [Raffin119

et al., 2021]. The actor network is designed as a single linear layer, while the critic network took the120

form of a two-hidden layer (64× 64) MLP network. The learning rate is set at 1× 10−4. Notably,121

despite initially setting the number of iterations to 100, 000, we manually terminated the process if122

convergence is achieved.123

Results. In Figure 3, we examine the spill intensity in scenarios involving unregularized, PID-124

regularized, and RL-regularized setups. Figure 3 (a) demonstrates that the spill corrected by RL125

is closer to unity when compared to the PID-corrected spill. Furthermore, we provide a visual126

representation of the SDF plot during the training process. Figure 3 (b) illustrates that the SDF127

achieved through RL surpasses that of PID regulation after 600 episodes.128

4 Conclusion129

We present an innovative RL-enhanced spill control system, utilizing a neural PID controller as the130

policy function, to tackle beam regulation issues in Mu2e experiments. To simulate real-world spill131

control scenarios, we utilize a differentiable Mu2e simulator to create spills, improve spill adjustments,132

and establish reward signals. Furthermore, we harness an RL-based controller for fine-tuning control133

signals during the regularization process. Our experiments demonstrate the superior performance of134

our method over the PID-based model.135
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