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Abstract: Adaptive optics imaging has enabled the enhanced in vivo retinal visualization of
individual cone and rod photoreceptors. Effective analysis of such high-resolution, feature rich
images requires automated, robust algorithms. This paper describes RC-UPerNet, a novel deep
learning algorithm, for identifying both types of photoreceptors, and was evaluated on images
from central and peripheral retina extending out to 30° from the fovea in the nasal and temporal
directions. Precision, recall and Dice scores were 0.928, 0.917 and 0.922 respectively for cones,
and 0.876, 0.867 and 0.870 for rods. Scores agree well with human graders and are better than
previously reported AI-based approaches.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Adaptive optics (AO) enhanced imaging modalities, namely flood illuminated [1], confocal laser
scanning ophthalmoscopy (SLO) [2] and optical coherence tomography (OCT) [3–6] enable
imaging of the human retina with lateral resolutions approaching a few micrometers. These dense,
feature rich datasets require the development of automated algorithms for tractable analysis and
interpretation. Considering just the cones, peak foveal density can approach 200,000 cones per
mm2 [7] precluding the use of manual identification and necessitating automated methods. The
situation is further complicated in disease where their structure may change considerably when
compared to healthy controls.

The first approaches towards automated analysis of the cone photoreceptor mosaic employed
techniques based on local intensity maxima determinations [8–11], modelling and normalized
cross-correlation [12], Hough transform [13], and optical flow and K-means clustering [14].
However, such techniques were often subject to particular conditions, for example a specific retinal
eccentricity, imaging modality, resolution, or ocular disease and hence have been challenging
to generalize. To tackle this problem, neural network models, especially deep Convolutional
Neural Networks (CNNs) [15], have been applied to retinal imaging, as they learn features
of interest directly from the training data provided. Various model architectures have been
reported, showing reliable and consistent performance in detecting cone photoreceptors over
different conditions. For instance, a patch-based CNN model, C-CNN [16] was proposed to
detect cone photoreceptors in either confocal or split detector images from healthy subjects. The
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same research group extended their model to a multi-modality version [17] which processed
simultaneously acquired confocal and split detector images together, with performance measured
in subjects with achromatopsia. Another study used a Multi-Dimensional Recurrent Neural
Network (MDRNN) [18] with only split detector images from healthy subjects and subjects with
Stargardt’s disease. Finally, a U-Net based Fully Convolutional Networks (FCN) model [19] was
investigated on the same dataset from [16], showing improvements over the original approach.

The application of neural networks for identifying the rod photoreceptors has been more
limited. Cunefare et al. [20] described a RAC-CNN model based on the U-Net architecture
whereby the model utilized multi-modality inputs (i.e. both confocal and split detector AO-SLO
images) and conducted a semantic segmentation for both cones and rods demonstrating good
performance with the retinal eccentricity from 1◦ to 7◦. However, split detector datasets are not
available with imaging modalities such as flood illuminated AO cameras or AO-OCT and hence
the ability to differentiate photoreceptor type based on just confocal images is unknown.

Moreover, previous studies only analyzed images taken from the central ±10◦ from the fovea.
For example, Cunefare et al. [16] and Davidson et al. [18] used data from 500 to 2800 µm
(approximately 1.8◦ to 10◦) and 300 to 2800 µm (approximately 1◦ to 10◦) respectively in all
meridians, Cunefare et al. [17] used data from the fovea to 12◦ in the temporal and superior
meridians, and Cunefare et al. [20] used data from 1◦ to 7◦ in the temporal retina. However,
prevalent diseases such as diabetic retinopathy [21] and retinitis pigmentosa [22] show their first
signs of disease in the peripheral retina, highlighting the importance of quantitative analyses at
these locations. This work aims to extend the retinal eccentricities over which deep learning
models can perform, a necessary first step before the challenging task of differentiating normal
and healthy cells.

The work presented here directly differentiates rods and cones from only confocal images
and moreover, extends the range of retinal eccentricities to 30◦ from the fovea. A novel CNN
architecture inspired by UPerNet [23], named RC-UPerNet, is employed and results are compared
and validated against other commonly used deep learning models as well as experienced human
graders.

2. Methods

Human annotations of cones and rods were first acquired for all images in the dataset. These
annotated images serve as the ground-truth for the training and testing of the CNN model, Fig. 1.
In the training stage, the annotated images were processed to generate label maps. The model
was then trained on these maps along with the original registered AO-SLO images. The trained
model could then generate probability maps for the three classes (cones, rods and background).
A blob finding based method [24] was used to localize cones and rods from the probability maps.
In the testing stage, the trained model was used to identify cones and rods in unseen images with
the results compared against human annotations.

In the following subsections, the four main components of the method are described, namely:
data collection, image pre-processing, the identification model architecture, and post-processing /
localization.

2.1. Data collection

Five young, healthy subjects were imaged at 12-14 retinal locations, namely the fovea, 3◦, 5◦, 10◦,
15◦, 20◦, 25◦, 30◦, in both the nasal and temporal meridians [25] on a research-grade AO-SLO
system described in detail in Wells Gray et al. [26]. Briefly, the AO-SLO system acquires 0.7◦
x 0.9◦ images of the retina at 60 frames per second at an imaging wavelength of 680 nm with
a lateral resolution of 2 µm. Prior to imaging, a combination of 1% tropicamide and 2.5%
phenylephrine was used to dilate the pupil and paralyze accommodation. During imaging, the
subject looked at a fixation target displayed on a computer monitor, which corresponded to the
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Fig. 1. Workflow of the model training and testing for cone and rod identification.

retinal location of interest. Multiple AO-SLO datasets (4-5 per retinal location, each containing
750-800 AO-SLO images) were acquired and subsequently post-processed to remove eye motion
[27]. For the AO imaging, the tenets of the Declaration of Helsinki were observed, and the
protocol approved by the Institutional Review Board of The Ohio State University (OSU). Written
informed consent was obtained after all procedures were fully explained to the subject and prior
to imaging.

For the manual annotation, all 66 registered images were presented to two experienced human
graders independently. Both graders used a rule-based algorithm to first generate an initial
estimate of the cone and rod photoreceptor centers. The algorithm took local maxima in terms
of pixel intensities from the input AO-SLO image and constrained the results based on the
user-provided cone and rod spacing. This initial estimation was then manually adjusted (by
adding or removing photoreceptors) by the grader. Over the whole dataset, human grader 1 (HG1)
marked a total of 6547 cones and 22765 rods, and human grader 2 (HG2) marked a total of 6254
cones and 21163 rods. Annotations from HG1 served as the ground-truth for the training and
testing of the proposed neural network model; annotations from HG2 were used for validation
purposes only.

2.2. Image preprocessing

Several preprocessing steps were applied before the training of the neural network model. For
each AO-SLO image (a 10◦ nasal retina (NR) AO-SLO image is shown in Fig. 2(a), and a foveal
image in Fig. 2(d)), an associated label map of the same size was created with each pixel on the
label map representing one of three possible classes viz. 1: cone, 2: rod, or 0: background,
according to the grader’s manual labeling of the photoreceptor approximate centers (Fig. 2(b)
and Fig. 2(e)). As the manual annotation only provided the photoreceptor centers rather than
their boundaries, we extended the label to all pixels within a small circular local area to capture
the photoreceptor boundary (Fig. 2(c) and Fig. 2(f)). This expansion mimicked the segmentation
environment typically used when training a neural network model. As photoreceptor size and
spacing varies with retinal eccentricity, using a universal setting for photoreceptor segmentation
throughout the whole dataset (as in [20]) would not be suitable. Thus, the expansion was
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based on the unique photoreceptor features and distributions within each individual AO-SLO
image. For each image, the cone radius and rod radius were first estimated by the photoreceptor
center-to-center distances, using the following equations:

Rc = min( min
∀c1,c2∈Sc

c1≠c2

0.45 ∗ dis(c1, c2), min
∀c1∈Sc
∀r1∈Sr

0.7 ∗ dis(c1, r1)) (1)

Rr = min( min
∀r1,r2∈Sr

r1≠r2

0.45 ∗ dis(r1, r2), min
∀c1∈Sc
∀r1∈Sr

0.2 ∗ dis(c1, r1)) (2)

where Rc and Rr denote the estimated cone radius and rod radius in this image; Sc is the set
of cone centers manually marked on this image; Sr is the set of rod centers; c1 denotes any
possible cone within Sc while c2 denotes any other possible cone within Sc; the same applies
for rods r1 and r2. Function dis(a, b) is the Euclidean distance between two points a and b. All
coefficients in the equations were heuristically chosen to maintain small separations between
adjacent photoreceptors after expansion and photoreceptor size ratios. Once the radii were
estimated, every manual photoreceptor center was then expanded to a circular area with the
corresponding radius. All pixels in the area were then marked with the same class as the center
pixel. All other pixels were set to be in the background class.

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a): An example 10◦ NR AO-SLO image; (b): Manual annotations on the image
where green and red marks indicate cones and rods respectively; (c): The label map generated
from (b) with expansion; (d): An example foveal AO-SLO image; (e): Manual annotations
on (d); (f): The label map generated from (e) with expansion.

A specific rule for the central fovea was that all cones were considered as rods for the neural
network model. In this region the cones have a similar size to the rods and the packing geometry
is also similar. These cones can experimentally bring confusion to the model in the learning
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stage and lower performance. In the testing stage, it is straightforward to revert all rod predictions
back to cones in central fovea images, as no rods exist here [7].

2.3. Model architecture

The semantic segmentation network for the rod and cone identification, termed RC-UPerNet was
built on the UPerNet (Unified Perceptual Parsing Network) model [23]. The original UPerNet
model aims to recognize multiple visual concepts from a given image at once, such as the
image scene (classification), object locations (segmentation), object materials (segmentation),
etc. Despite its ability to learn multiple concepts, the model also achieves superior performance
when used for single concept learning. Here, the model was modified from its original design to
only retain one segmentation module, and trained to segment both cones and rods.

The proposed RC-UPerNet model is mainly composed of a Feature Pyramid Network (FPN)
[28] with a Pyramid Pooling Module (PPM) [29] (see Fig. 3). The FPN consists of a bottom-up
pathway, a top-down pathway, and lateral connections. The bottom-up pathway is often referred
as an encoder, in which many convolutional layers are stacked and feature maps are down-sampled
to different scales for high level semantic representations. Specifically, ResNet-50 [30] was used
in our experiments as the encoder. The set of last feature maps of each stage in ResNet-50 were
used to form the feature pyramid, whose down-sampling rates were {4, 8, 16, 32}. The top-down
pathway on the other hand up-samples feature maps from higher pyramid levels to detailed and

Fig. 3. The proposed RC-UPerNet model architecture. The model mainly contains a Feature
Pyramid Network (FPN) [28] with a Pyramid Pooling Module [29]. A fusion module
integrates all outputs from the FPN into a fused feature map, which will be consumed by the
final classifier.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a): An example 10◦ TR AO-SLO image; (b): The cone probability map generated
by the trained RC-UPerNet model. Color bar shows the percentage probability; (c): Cone
blobs (green circles) found from (b) using the blob finding method; (d): Final detected
cone positions (green marks) in the image; (e): Manually labeled photoreceptor centers
for the image where green marks indicate cones and red marks indicate rods; (f): The rod
probability map generated by the trained RC-UPerNet model; (g): Rod blobs (red circles)
found from (f) where blobs close to cone blobs in (c) have been removed; (h): Final detected
rod positions (red marks) in the image.

higher resolution features. These features are enriched with features of the same spatial sizes from
the bottom-up pathway through lateral connections. Note these lateral connections are not simple
skip connections [31], but rather the application of convolutional layers to the features from the
bottom-up pathway before connecting them to the features in the top-down pathway. Outputs
from each block in the top-down pathway are then fused (interpolated and concatenated) together
to generate a comprehensive feature map. A convolutional layer with kernel size 3 × 3, and a
classifier that used a convolutional layer with kernel size 1 × 1 along with a softmax activation
function, are then applied to the above feature map for the final segmentation prediction.

In addition to FPN, PPM from PSPNet [29] is applied on the last layer of the bottom-up
network before feeding it into the top-down pathway. PPM is designed to overcome the issue
that the empirical receptive field of a deep CNN is relatively much smaller than in theory [32].
The module applies several pooling operations with different sizes to a starting feature map,
aiming to harvest different sub-region representations. These pooled feature maps are then put
through convolutional and upsampling layers and concatenated together along with the starting
feature map. This forms a final feature representation in which both local and global contextual
information are embedded. It was found that PPM is highly compatible with the FPN architecture
by bringing effective global prior representations [23]. The original model design implementation
described in [23] was used in our experiments. Other model settings, such as different numbers
of layers, different filter sizes, individual FPN or PSPNet model, are yet to be explored. Readers
are referred to [28] and [29] for further details on FPN and PPM.
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2.4. Post-processing and localization

In order to generate photoreceptor positions from the output probability maps of the neural network
model, additional post-processing is required to localize the photoreceptors. To understand this,
suppose the model yields an output of size H × W × 3, where H × W is the size of the input
image. Each channel of the output may be thought of as a probability map corresponding to one
of the three classes: cones, rods, or background. Each probability map indicates how likely each
pixel from the original image belongs to a certain class. For localization, a blob finding method
[24,33] was employed where cone and rod probability maps were processed separately. As an
example, a 10◦ temporal retina (TR) AO-SLO image and its corresponding manually marked
photoreceptor centers are shown in Fig. 4(a) and Fig. 4(e). For cone localization, a series of
Laplacian of Gaussian (LoG) filters with increasing standard deviations were applied to the cone
probability map (Fig. 4(b)) and the resulting images were stacked into a cube. With local maxima
being extracted from the cube, thresholding and an overlapping condition, which eliminated
smaller blobs if they overlapped with a larger blob by a fraction of 0.5, were applied to only
retain the most proper blobs, Fig. 4(c). The corresponding center positions of the final blobs in
the original image were then marked as cone locations, Fig. 4(d). The same process was applied
for rods, Fig. 4(f)–4(h). This blob finding method outperformed the typical local-maximum
finding method by a noticeable margin.

As the cone and rod probability maps were processed separately, it was possible that within
the range of a cone blob, rod blobs were also detected. In such cases, the one that had the higher
probability was retained. In other words, if a cone blob had a probability Pc (the maximum
probability from this cone blob range in the cone probability map) and all other detected rod
blobs had lower probabilities than Pc, then only the cone blob would be retained while all rod
blobs would be removed. On the other hand, if one of the rod blobs had a higher probability than
Pc, then all rod blobs in this range would be retained with the cone blob being removed.

3. Experiments and results

3.1. Model training

Owing to the size of the dataset, a five-fold cross-validation was implemented for the comprehen-
sive analysis of the model performance [34], instead of a train-validation-test split on the dataset
which would result in less number of images in each set. For each fold in the cross-validation, the
data were split in an 80-20 manner where data from four subjects were used for model training,
with one subject’s data remaining unseen during training and was only used for testing. Each
specific subject’s data would serve as the test once in a specific fold. In the training stage, only
annotations from the first human grader (HG1) were used as the ground-truth; results from the
second human grader (HG2) were used only for validation.

The model was developed and run in Python 3.7 with the deep learning packages PyTorch [35]
and MMSegmentation [36]. The model was trained for a total of 500 epochs with Stochastic
Gradient Descent (SGD) as the optimizer. The batch size was set as 2 during training. The
learning rate was set as 0.01 with a momentum of 0.9 and a weight decay of 0.0005. The loss
function, L was based on the cross-entropy, that is:

L = −
∑︂

(x,y)∈Ω

2∑︂
c=0

q(x, y, c) · log p(x, y, c), (3)

where (x, y) denotes a pixel in the image Ω. c denotes a class, where the representations are 0 for
background, 1 for cone, and 2 for rod. q(x, y, c) is a binary indicator (0 or 1) showing if class
label c is the correct classification for pixel (x, y), and p(x, y, c) is the predicted probability that
pixel (x, y) is of class c.
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In particular, note that the model was pre-trained on the ADE20K [37,38] dataset, and then
fine-tuned on our cone and rod datasets. The ADE20K dataset contains 27,574 general scene
images with 707,868 unique objects annotated from 3,688 categories. This common Transfer
Learning practice [39,40] aims to transfer the information gained by a neural network model
from a source domain where data is abundant to a target domain where the amount of training
data may be limited. Additionally, random flipping with a chance of 50% on both vertical and
horizontal directions and rotation with a chance of 25% for 0◦, 90◦, 180◦, 270◦, respectively
were performed on images as data augmentation steps during the model training on the AO-SLO
datasets.

Our computational infrastructure consisted of an NVIDIA Tesla P100 GPU with 16 GB of
memory. Training averaged a time of 16.6 seconds per epoch, resulting in a total of 2.31 hours
for a 500 epochs setting. Model inferencing on the test set averaged 0.18 seconds per image.

3.2. Performance measures

To measure the performance of the RC-UPerNet model, standard precision, recall and Dice
coefficient scores were used. Each cone and rod detected by the algorithm was matched to the
HG1’s manual annotations for the identification of all true positives (TP), false positives (FP)
and false negatives (FN), following the approaches presented in [17,20]. Taking the cones as an
example, a predicted cone was considered a true positive if it was close enough to a manually
marked cone by a distance dc. The distance dc was empirically set to 1.5 × Rc from Eq. (1),
as 1 × Rc was found to be too strict for the measurement and created spurious FPs and FNs
(FPs and FNs that were actually TPs in terms of human evaluation), while a larger number
(e.g. 2 × Rc) resulted in excessive false TPs. Predicted cones that failed to match to a manually
marked cone were considered false positives, and manually marked cones that did not have a
matching predicted cone were considered false negatives. If multiple predicted cones matched
a same manually marked cone, only the closest one was considered a true positive with the
rest considered false positives. The same process was applied to rod photoreceptors, however
with a different distance dr set to 1.5 × Rr from Eq. (2). To avoid border effects, predicted and
manually marked photoreceptors within 10 pixels of the edges of the image were ignored during
measurement. Finally, the precision, recall and Dice coefficients were computed based on each
photoreceptor type, using the following equations:

Precision =
NTP

NTP + NFP
, (4)

Recall =
NTP

NTP + NFN
, (5)

Dice =
2NTP

2NTP + NFP + NFN
, (6)

where NTP, NFP and NFN denote the number of true positives, false positives and false negatives,
respectively. Unless specifically stated, the precision, recall and Dice coefficients were computed
in an aggregated manner over the dataset. In other words, the true positives, false positives and
false negatives were first counted and summed over all images in the dataset, following which
precision, recall and Dice coefficients were calculated.

3.3. Results

The performance of our RC-UPerNet implementation was compared against other state-of-the-art
approaches, i.e. C-CNN [16], RAC-CNN [20], and a UNet++ [41] model. It should be noted
that as the datasets and problem statements differed, the exact approaches presented in [16] and
[20] could not be exactly applied. For example, C-CNN [16] only tried to classify between cones
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and backgrounds, without considering rods. Also, RAC-CNN [20] used both confocal and split
detector images to train their model, whereas our dataset only contained confocal images. Hence,
the following minimum adaptions were made to the reproduced models: for the C-CNN, the
filter size was doubled in all convolutional layers and the final fully-connected layer altered to
make a 3-class classification; For RAC-CNN, the pathway for split detector images was simply
excised. Note that the capability of the full RAC-CNN model cannot be compared due to the lack
of the split detector information, which can be a fundamental element to the model’s superior
performance. However, we made the minimum adaption above to the model so that they were
most comparable on our dataset. More discussion on having additional input information is
provided in Section 4. Moreover, an additional UNet++ based model was also implemented
for further comparison. This UNet++ model was similar to the RAC-CNN model except that
the core was changed from a U-Net architecture to the UNet++ architecture. Local-maximum
finding was used as the post-processing for these models to localize the photoreceptors. Finally,
the inter-grader agreement was measured by treating HG1’s annotation as the ground-truth and
HG2’s annotation as the detection.

Table 1 presents the mean performance and standard deviations of all methods from the
cross-validation experiments. It can be seen that the RC-UPerNet algorithm received the best
performance where the mean Dice coefficient was 0.922 for cones and 0.870 for rods. Also, the
standard deviation for the proposed method is much lower than the other methods, suggesting
that RC-UPerNet is more robust when trained with different portions of the dataset. Moreover,
the RC-UPerNet method had the closest performance to HG2.

Table 1. Performance of the proposed RC-UPerNet model against other
competitive methods and HG2. All scores are averaged across the 5-fold

cross-validation. Standard deviations are shown in the second row of each cell.
The best score within each column is shown in bold and the second best is shown

in italics.

Model Cone Rod
Precision Recall Dice Precision Recall Dice

C-CNN [16]
0.891 0.825 0.856 0.785 0.839 0.810

± 0.068 ± 0.041 ± 0.044 ± 0.064 ± 0.027 ± 0.037

RAC-CNN [20]
0.904 0.896 0.900 0.808 0.851 0.829

± 0.038 ± 0.029 ± 0.031 ± 0.047 ± 0.036 ± 0.037

UNet++ [41]
0.895 0.906 0.900 0.798 0.895 0.843

± 0.025 ± 0.022 ± 0.018 ± 0.057 ± 0.042 ± 0.027

RC-UPerNet (Ours)
0.928 0.917 0.922 0.876 0.867 0.870
± 0.012 ± 0.016 ± 0.008 ± 0.029 ± 0.040 ± 0.014

HG2
0.953 0.935 0.944 0.919 0.830 0.869

± 0.030 ± 0.015 ± 0.013 ± 0.071 ± 0.073 ± 0.041

Figure 5 shows photoreceptor detection examples from our RC-UPerNet method and the
RAC-CNN method for AO-SLO images from 3 representative retinal locations, i.e. 5◦ NR, 10◦
TR, and 30◦ NR. The detected cones and rods are measured against HG1’s annotation where
green marks stand for true positives, yellow for false positive, and red for false negative. The
Dice coefficient for each method on each individual image is also shown. For conciseness, results
from the C-CNN method are not shown in Fig. 5, but were generally poorer compared to the
RAC-CNN and RC-UPerNet methods.
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Fig. 5. Performance of the RC-UPerNet and RAC-CNN models on sample AO-SLO images
taken from 5◦ NR, 10◦ TR, and 30◦ NR. All photoreceptor centers are measured by HG1’s
annotation where green marks denote true positives, yellow marks denote false positives,
red marks denote false negatives. The Dice coefficient for each image is shown in the left
bottom corner.
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4. Discussion

A key differentiator of this work is the wide range of retinal eccentricities that our datasets
cover, namely out to 30◦ from the fovea. Previous efforts were limited to retinal locations within
10◦ (see Section 1) [16–18,20]. In the peripheral retina, the identification task becomes more
challenging as both the size, spacing, luminance, and modal structure of the cones can vary
significantly while the number of rods dramatically increase. Our method proves to be robust
to such noise effects achieving stable results throughout the retina. However, the performance
can diverge depending on retinal locations and types of the photoreceptor, e.g. the weaker
rod identification shown in the 5◦ NR image in Fig. 5. A detailed breakdown of the model’s
performance for different retinal eccentricities is provided in Fig. 6. For rod identification, our
RC-UPerNet model achieved better performance in the more peripheral retinal locations (≥ 10◦)
than in the more central retinal areas (<10◦). On the other hand, for cone identification, the model
generally attained satisfying performance (∼ 0.9 Dice coefficient). However, it made slightly
poorer predictions in the peripheral locations as some cones become bimodal in appearance. Also
notice the lower Dice coefficients and larger standard deviations reported for cone identification
at 15◦ and 30◦, Fig. 6. These were primarily due to one lower quality image at each location
which had individual RC-UPerNet Dice coefficients of 0.698 and 0.522 respectively. These
two images also received lower Dice coefficients from RAC-CNN (0.686 and 0.588), UNet++
(0.686 and 0.556), and HG2 (0.808 and 0.667), suggesting that lower image quality also created
uncertainties to other competitive models and even human graders. Removing these two images
in the cones calculation resulted in improved mean Dice coefficients of 0.889 at 15◦ and 0.854 at
30◦, comparable to the cone Dice scores at the other locations. Standard deviations of the Dice
coefficients also reduced from 0.097 to 0.068 at 15◦ by removing the image, and from 0.144 to
0.062 at 30◦.

Fig. 6. Performance of RC-UPerNet model for different retinal eccentricities.

An underlying advantage of the proposed RC-UPerNet model was that it produced more precise
probability maps (before post-processing) than the other models. Taking the 30◦ NR image in
Fig. 5 for example, the probability map generated by the RC-UPerNet showed perceptible benefits
for segmentation, as it cleanly and reliably put high probabilities for pixels to their correct classes
(see Fig. 7). In contrast, the cone probability map from the C-CNN model [16] was noisier, i.e.
some rod regions also had relatively high probabilities in the cone map. Also, its rod probability
map had more connected areas, making it harder to locate each individual cell. The RAC-CNN
model [20] had issues in that it gave relatively high probability to rod boundaries in the cone map
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and even higher probabilities to cone centers in the rod map. The UNet++ model [41] was better
than the RAC-CNN model in that it had less wrong probabilities in the rod map for the cone
center areas, however, it still it mishandled rod boundaries in the cone map. Poor probability
maps from these models in turn require more complex post-processing procedures to properly
handle the undesired patterns and more careful hand-tuning for good identification results (e.g.
tuning on the thresholds, which can be again time-consuming for users). Hence, the proposed
RC-UPerNet outperformed other models also in the sense that it produced more accurate and
post-processing friendly results.
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Fig. 7. Comparison of the model predicted probability maps between C-CNN [16], RAC-
CNN [20], UNet++ [41], and the proposed RC-UPerNet. Cone probability maps are on
the top row and rod probability maps are on the bottom row. Probability maps from the
proposed RC-UPerNet are more precise and reliable for segmentation and localization of the
photoreceptors.

For measuring and comparing model performance, the number of photoreceptors, a common
index used in diagnosis, was further evaluated for our proposed RC-UPerNet and other models.
Bland-Altman plots for cone and rod photoreceptor counts from each model against HG1 are
shown in Fig. 8. For RC-UPerNet, the 95% confidence limits of agreement for the average
difference in cone counts and rod counts were -0.35 ± 9.22 and 8.80 ± 39.18, respectively.
The same metrics were -6.09 ± 21.40 and 28.11 ± 37.01 for the C-CNN model; -0.12 ± 15.74
and 22.54 ± 38.61 for the RAC-CNN model; 0.98 ± 12.39 and 58.41 ± 69.89 for the UNet++
model. The lower mean differences and narrower confidence limits from our method gave further
evidence that it agrees better with the human grader, and hence is a more reliable photoreceptor
detector.

Human graders can help improve the identification accuracy through manual adjustments on
cones which also results in improved identification of rods. As mentioned in the post-processing
(see Section 2.4), there were situations where the model made both cone and rod predictions in a
small local area. In such cases, only the photoreceptor that had the higher probability would
be retained. However, no model is perfect, and may give a higher probability to the wrong
photoreceptor type, resulting in both incorrect cone and rod identification. Examples can be
found in Fig. 5 where a false positive (yellow) cone prediction spawns several false negative
(red) rods due to the removal of rod predictions close to this cone. On the other hand, a false
negative cone could cause a false positive rod potentially because the intensity at the center
makes the model confuse a cone with a rod. Hence, to test each model with no such confusing
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Fig. 8. Bland-Altman plots of (a) cone and (b) rod photoreceptor counts for C-CNN [16],
RAC-CNN [20], UNet++ [41], and the proposed RC-UPerNet. The mean difference is
shown as the middle solid line, and the 95% confidence limits of agreement is shown as
dotted lines.
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areas, experiments were conducted with the assumption that all cone locations were known
beforehand. From such experiments, the overall Dice coefficient for rods was improved from
0.870 to 0.884. Precision and recall scores were also improved from 0.876 to 0.887 and 0.867 to
0.882, respectively. This suggested that further improvements on cone identification was more
crucial since rod predictions would also benefit. We recommend the use of a semi-automated
method where human graders iteratively adjust cone predictions; rod predictions will also be
improved and require less manual correction. This can be especially helpful in the peripheral
retina areas where the model has more confusion about cones (with the caveat that cones are
large, sparsely distributed and thus only need a few manual adjustments).

Future work will seek improvements of the proposed method in the following directions. Firstly,
a larger annotated AO-SLO image dataset will benefit our RC-UPerNet model, as the model
is highly data-driven. Having the model see more training samples, especially for regions that
currently received weaker predictions, will enable it to better learn the features and produce more
accurate predictions. Because photoreceptor features and distributions vary over different retinal
eccentricities, encoding meta information (such as retinal eccentricity and imaging parameters)
into the model can potentially also improve performance. Ideally, the model would learn to focus
on specific features, such as photoreceptor sizes or how rods are distributed among cones, for
each different scenario, hence producing identifications of higher quality. Finally, if the imaging
system allows the simultaneous acquirement of images from other modalities (e.g. split detector
or an OCT channel) along with each confocal image, these images could serve as additional inputs
and provide information from different perspectives to the model. For example, images from a
modality that emphasizes cones while depressing rods will help better capture the cones. Note
that we can use the same UPerNet architecture for each additional input image and concatenate
the "Fused Feature Maps" before feeding them into the final two blocks. Promising improvements
along this direction have been shown in [17] and [20].

5. Conclusion

This work describes and evaluates RC-UPerNet, a novel neural network model for the identification
of rod and cone photoreceptors from AO-SLO confocal images. RC-UPerNet was trained and
tested on images that covered a larger range of retinal eccentricities (0-30◦) than hitherto
considered in prior work, and where the identification task was more challenging due to the
variation in photoreceptor features. Our proposed RC-UPerNet model received overall Dice
coefficients of 0.922 for cones and 0.870 for rods, surpassing other published automated methods
by a noticeable margin. Further contributions of this work include the collection of a larger
annotated dataset with encoded meta information, and the use of other imaging modalities.
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